
myjournal manuscript No.
(will be inserted by the editor)

Strategies for deriving new explicit Runge–Kutta pairs*

J.H. Verner

Dedicated to Professor J. C.
Butcher in celebration of his sixtieth birthday

October 31, 2013
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1 Introduction

To treat nonstiff vector differential equations of the form

y′ = f(t, y), y(t0) = y0, (1)
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pairs of explicit Runge–Kutta methods are often selected. From approximate
derivative evaluations

fni = f(tn + cih, yn + h

i−1∑
j=1

aijfnj), i = 1, . . . , s. (2)

two endpoint approximations

yn+1 = yn + h

s∑
i=1

bifni,

ŷn+1 = yn + h

s∑
i=1

b̂ifni,

n = 0, 1, . . . ,

of orders p and p− 1, respectively, are used to propagate an approximate so-
lution and estimate the local error over a step of length h. The coefficients
{bi, b̂i, aij} and nodes {ci =

∑i−1
j=1 aij} distinguish particular pairs of meth-

ods, and it is often convenient to denote each pair by a Butcher tableau where
A is an s × s lower-triangular matrix, and each of b, b̂, c are s-vectors. (In
subsequent development, C will denote an s× s diagonal matrix with c = Ce

Table 1 A Butcher Tableau.
c A

btbbt
(3)

where e is the s-vector with each element equal to 1.) The selection of these
coefficients is in part a compromise between the reliability of the approxima-
tion and error estimate to be obtained, and the efficiency of the implemented
algorithm. To obtain an approximation of a particular order of accuracy, an
algorithm would be selected from one of several parametric families. In prac-
tice, the number of stages required for each step is often minimized to achieve
a particular order, and some or all remaining arbitrary parameters are se-
lected to optimize efficiency while maintaining adequate levels of stability and
reliability.

For such a strategy to yield the best algorithms, it is desirable that all
existing pairs be identified and preferably characterized parametrically. Al-
though the minimum numbers of stages required for methods of orders at
least p ≤ 8 are known, the characterization of various types of methods of
orders p > 5 remains incomplete. That is, there may exist different families
or even different types of explicit Runge–Kutta methods which are yet undis-
covered. In searching for new methods or pairs of methods, it is helpful to
identify different types of methods by their general design, and within each
type to characterize families for each order in terms of parameters which may
be selected arbitrarily.
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Algorithms for constructing pairs of orders p−1 and p requiring s stages are
of interest, and Verner [10] has proposed a classification scheme for identifying
potentially fruitful designs. Some known and new families are distinguished
by their features in Table 2. For many pairs, only s interior stages are used
to estimate both the propagated value and the error estimate. In contrast, in
pairs of the FSAL type (for which the First stage of a new step is the Same

Table 2 Stages required for some high-order pairs.
Source of Generic formula for Stages for orders:
Derivation number of stages 5:6 6:7 7:8 8:9

Traditional Pairs
Fehlberg [4] (p2 − 9p + 34)/2 8 10 13 17
Verner [7] ≤ (p2 − 9p + 34)/2 8 10 13 16
Prince & Dormand [5] (p2 − 9p + 34)/2 8 13
Recent Pairs
Sharp & Verner [6] ≤ (p2 − 7p + 24)/2 9∗ 12∗ 15∗ 20∗

Sharp & Verner [6] ≤ (p2 − 7p + 22)/2 8 11 14 19
New Pairs
New FSAL (p2 − 9p + 36)/2 9∗

New nonFSAL (p2 − 9p + 34)/2 8 10
∗Indicates FSAL pairs (one stage may be reused after each successful step)

As the Last stage of an immediately preceding successful step), the derivative
evaluation of the propagated value is also utilized in the error estimator. In
terms of their chronological development, pairs of both types are grouped as
traditional, recent or new.

From Table 2, observe for p > 6 that each Sharp–Verner pair requires
more stages than each traditional pair of the same orders. However, as Table 3
(below) reports, families of Sharp–Verner pairs have more arbitrary parameters
in their parametric representation. Hence, the inefficiencies due to more stages
may be offset if smaller coefficients in the local truncation error can be obtained
by a careful choice among the larger set of arbitrary parameters.

The objective of this article is to derive pairs which preserve the smaller
numbers of stages per step required by traditional pairs, but expand the set
of arbitrary parameters available. To achieve this, we adapt the design of
traditional pairs by removing the assumption that cs−1 = 1. In practice, to
derive families of methods of this adapted design implies that new strategies
for solving the order conditions are needed.

2 The order conditions and other notation

In the classification of [10], the interpretation of each stage of an explicit
Runge–Kutta method as an internal approximation of some order pi ≤ p
allows for the distinction among different types of pairs and for the derivation
of some particular types. This stage-order identifies the quadrature order of
each stage together with a property which dissociates stages of lower order
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from those of higher order. Thus, for each i = 1, . . . , s, stage i has stage-order
pi if

qki ≡
i−1∑
j=1

aijc
k−1
j − cki

k
= 0, k = 1, . . . , pi, (4)

and
aij = 0, pi > pj + 1. (5′)

This leads to the definition of the stage-order vector (SOV) of a method as
(p1, . . . , ps), and the dominant stage-order (DSO) as the least value of pi for
which at least one of the corresponding weights bi or b̂i is nonzero. Generic
values of the DSO for some families are given in Table 3. Furthermore, we
form an augmented stage-order vector (ASOV) by appending to an SOV the
stage-orders of stages used only for propagation of the solution or for error
estimation. For example, a traditional eight-stage pair of orders 5 and 6 for
which the DSO = 2 has an ASOV = (6, 1, 2, 2, 2, 2, 2, 2 : 6, 5) while a new FSAL
pair with the error estimate obtained using the first nine stages is characterized
by the ASOV = (6, 1, 2, 2, 2, 2, 2, 2, 6 : 5). For each positive k, the s-vector

qk ≡ ACk−1e− 1
k
Cke, (5′′)

with components given by the subquadrature expressions in (5), is used to
specify the order conditions and to simplify proofs which follow.

Butcher [1] has shown that the set of conditions which must be satisfied
for a method to be of order p may be identified by a one-to-one mapping
with the set of rooted trees on no more than p nodes. Some knowledge of this
theory is assumed, although an equivalent modified set of order conditions,
described formally in [6] and briefly here, is also used in the development. The
tree t = τ consisting of one node which is its root has height H(t) = 1. This
tree together with trees t = [τ r−1], r = 2, . . . , p, of height H(t) = 2, each
defined by attaching r − 1 nodes to a root, are identified with the quadrature
order-conditions

s∑
i=1

bic
r−1
i =

1
r
, r = 1, . . . , p, (5)

and for each stage i, i = 1, . . . , s, with the compound weights,

ψi(τ) = ci, ψi([τ r−1]) = qri , r = 2, . . . , p. (6′)

Then, for a suitable ordering of the rooted trees, the remaining Np − p order
conditions are formulated recursively. For increasing values of r(t), 3 ≤ r(t) ≤
p, each tree t = [t1, . . . , tk] with r(t) = 1 + r(t1) + · · · + r(tk) nodes and
height H(t) ≥ 3, and formed by attaching the k subtrees t1, . . . , tk, to a root,
corresponds to the subquadrature order-condition

ψ(t) ≡
s∑
j=1

bj

k∏
l=1

ψj(tl) = 0, (6)
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and the compound weights,

ψi(t) =
s∑
j=1

aij

k∏
l=1

ψj(tl), i = 1, . . . , s. (7′)

The remainder of the paper focuses on finding coefficients which satisfy
(5)–(7) together with a second vector of weights b̂t for which (6) and (7) are
valid when b̂t replaces bt and p−1 replaces p. Four complementary devices for
solving these order conditions are described in §3. Section 4 weaves an intricate
path through the order conditions using these devices to identify parametric
families of new methods of order p requiring s = (p2−9p+36)/2 stages. While
the development motivates the choices made and indicates a variety of choices
that remain to be studied, a reader wishing only to construct new methods
may do so by implementing the equations of Lemma 4. Section 5 indicates how
further constraints yield embedded pairs, and two types are given in Lemmas
6 and 7. So far, only some families for p = 6 and p = 7 have been constructed,
and details for constructing three of these with particular examples are given
in §6.

Table 3 tabulates the dominant stage orders and the numbers of arbitrary
nodes and other arbitrary coefficients (separated by a slash) of both known
and new families of pairs. Furthermore, one additional arbitrary parameter is
available for each family since any nontrival convex combination of approxi-
mations of orders p− 1 and p has order p− 1.

Table 3 Stages (s) and Arbitrary Parameters (AP) required.
Orders p− 1 : p 5:6 6:7 7:8 8:9
Type DSO s AP s AP s AP s AP

Verner [7] p− 4 8 4 10 5 13 7/1 16 7/1
Prince & Dormand [5] p− 4 8 4/2 13 7/3

Sharp & Verner [6] p− 3 9∗ 5 12∗ 7/1 15∗ 7/1 20∗ 8/3
Sharp & Verner [6] p− 3 8 4 11 6/1 14 6/1 19 7/3

New FSAL p− 4 9∗ 6/2
New nonFSAL p− 4 8 6/1 10 7/1

3 Devices for solving the order conditions

3.1 STAGE ORDER SELECTION

Both types of new pairs are derived from a single method of order p which
uses s = (p2−9p+34)/2 stages. The first of four devices for deriving this basic
method is the choice of an augmented stage-order vector: for p = 6, ASOV =
(6, 1, 2, 2, 2, 2, 2, 2 : 6), and for p = 7, ASOV = (7, 1, 2, 3, 3, 3, 3, 3, 3, 3 : 7) are
appropriate choices. In general, the appropriate ASOV is determined by select-
ing certain subsets of nodes to be distinct, and then sequentially constraining
the coefficients for successive stages.
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LEMMA 1
For each p ≥ 6, there exist methods with s = (p2 − 9p+ 34)/2 stages, an

ASOV = (p, 1, 2, 3, 3, . . . , p− 4, . . . , p− 4 : p) where these stage-orders are

p1 = p, (7)
p2 = 1,
pi = q, i = ρq + 1, . . . , ρq + q − 1, ρq = (q2 − 3q + 6)/2, 2 ≤ q ≤ p− 5,
pi = p− 4, i = ρ+ 1, . . . , ρ+ p, ρ ≡ ρp−4 = (p2 − 11p+ 34)/2 ≡ s− p,

and with weights which satisfy (6) and

bi = 0, i = 2, . . . , ρ. (6′′)

Proof
For each q, 2 ≤ q ≤ p− 5, ρq + q − 1 = ρq+1, so that (8) uniquely defines

the entries of an augmented stage-order vector. The general proof is an analog
of the proof of Lemma 1 in [6] which shows how to restrict the coefficients and
weights to satisfy (5), (5′) (6), and (6′′). For illustration, the result is proved
for the case p = 7 and s = 10 only. For c1 = 0 and a1i = 0, 1 ≤ i ≤ s, qr1 = 0
for all r, so that (5) is valid for any choice of p1. For a21 = c2 6= 0 (to make
stage 2 different from stage 1), p2 = 1, and for a32 = c23/2c2 6= 0, p3 = 2,
so that (5) is valid for stages 2 and 3. For stages 4 to 10, then (5′) as well
as (5) must be satisfied, so that ai2 = 0, i = 4, . . . , 10, is imposed. Now if
c1 = 0, c3, c4 are distinct, for each stage i ≥ 5, {aij , j = 1, 3, . . . , i− 1} may
be chosen with i−5 arbitrary choices to satisfy (5). Otherwise, for stage i = 4,
we need to choose a41, a43 to satisfy three conditions of (5). This is possible
if and only if ∫ c4

0

c(c− c3)dc = 0, (8)

or c3 = 2c4/3. Finally, by choosing b2 = b3 = 0 to satisfy (6′′), and b4 arbitrary,
the remaining seven weights {bi, i = 1, 5, . . . , 10} can be chosen to satisfy (6)
if the seven corresponding nodes are distinct. �

Observe that ρ = s − p so that (6′′) implies bi = 0 if pi ≤ p − 5. Hence,
(6′′) will be interpreted as a modified analog of (5′) when the approximation
of order p is specified as stage s + 1. The arbitrary choices identified in the
proof will be exploited to solve remaining order conditions, or else will remain
arbitrary to characterize a parametric family.

3.2 LEFT HOMOGENEOUS POLYNOMIALS

For the second device, define Λr, the set of left homogeneous polynomials of
degree r, recursively by

Λ1 = {bt},
Λr = Λr−1A ∪Λr−1C, r = 2, . . . , (9)
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where Λr−1A and Λr−1C denote sets obtained by post-multiplying elements of
Λr−1 byA and C, respectively. For example,Λ3 = {btA2, btAC, btCA, btC2}.
Now denote the first vector of each set by Br ≡ btAr−1, so for example
B3k =

∑s
i>j=k+1 biaijajk, k = 1, . . . , s − 2. Then for each positive r, the

traditional order condition (arising from linear differential equations) corre-
sponding to the tree r[τ q]r requires that

btAr−1Cq−1e ≡
s∑
i=1

Bric
q−1
i =

1
q(q + 1) · · · (q + r − 1)

(10)

≡
∫ 1

0

∫ x1

0

· · ·
∫ xr−1

0

xq−1
r dxr · · · dx2dx1, q = 1, . . . , p− r + 1.

Now select values for Br in an analogous way to the selection of weights in
Lemma 1. Stages of lower order are suppressed by requiring that

Bri = 0, i = 2, . . . , ρ, ρ ≡ s− p. (11)

Next, choose one more value arbitrarily, selected without loss of generality as
Br,ρ+1. Then with nodes {ci, i = 1, ρ + 2, . . . , s} distinct, for r = 1, 2, . . . ,
define polynomials

πs−r+1(c) = (c− c1)(c− cρ+2) · · · (c− cs−r+1) (12)

of degree p− r + 1, and

πs−r+1
j (c) =

πs−r+1(c)
(c− cj)

, j = 1, ρ+ 2, . . . , s− r + 1, (13′)

of degree p − r. Then Lagrange interpolation implies that values chosen by
(12) and

Bri =
{
Br,ρ+1π

s−r+1
i (cρ+1)−

∫ 1

0

· · ·
∫ xr−1

0

πs−r+1
i (xr)dxr · · · dx1

}/
πs−r+1
i (ci),

i = 1, ρ+ 2, . . . , s− r + 1, (12′)

satisfy (11). For r = 1, (12) and (12′) are equivalent to the choice of weights
{bi, i = 1, . . . , s} in Lemma 1.

Although alternative arbitrary choices are possible, (12) serves to satisfy
other order conditions as well. The derivation of traditional pairs in [7] uses
(12) and an analog of (12′) explicitly for r = 1, 2, 3, 4. This article imposes these
constraints explicitly only for r = 1, 2, 3. Thus, from coefficients {aij , i ≤ s−2}
computed to satisfy stage-order conditions (5) and (5′) and other constraints
yet to be determined, and nodes selected so that B2,s−1 ≡ bsas,s−1 evaluated
by (12′) is nonzero, coefficients for the final two stages will be obtained by the
back substitution

as−r+2,j =
Brj −

∑s−r+1
i=j+1 Br−1,iaij

Br−1,s−r+2
, r = 2, 3, j = s− r+ 1, . . . , 1. (13)
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3.3 BUTCHER’S ROW SIMPLIFYING ASSUMPTIONS

The third device required is the set of Butcher’s simplifying conditions,

B2i = bi(1− ci), i = 1, . . . , s. (14)

By (12), this is valid trivially for i = 2, . . . , ρ, and can be established for all
other values of i if the coefficients are restricted to satisfy only two conditions
of (15) explicitly. Specifically, we require cs = 1 (which implies (15) for i = s),
and B2,ρ+1 ≡

∑s
i=ρ+2 biai,ρ+1 = bρ+1(1 − cρ+1). With (12′) for r = 1, these

with (13′) give for each i = 1, ρ+ 2, . . . , s− 1,

bi(1− ci) =
{
bρ+1π

s
i (cρ+1)−

∫ 1

0

πsi (x)dx
}

(1− ci)
/
πsi (ci) ≡ B2i, (15′)

where the final equality is obtained by reversing the order of integration in
(12′) for r = 2.

Observe to use (14) that bs−1(1− cs−1) 6= 0 which constrains the arbitrary
choices slightly (and precludes the traditional methods in [7] at least formally).
Subject to cs = 1 and this requirement, bρ+1 and B3,ρ+1 remain arbitrary while
B2,ρ+1 is now determined by (15).

3.4 RIGHT HOMOGENEOUS POLYNOMIALS

The final device is motivated by observing from (7) that both bt and btC must
be orthogonal to certain vectors of IRs. Interpret (7) as a requirement that bt

be orthogonal to columns of the (Np−p)×s matrix Ψ ′p. Each column, a vector
of compound weights, is a polynomial of degree r − 1 in A and C, which is
uniquely determined by t = [t1, . . . , tk], a tree of height H(t)≥ 3 and r ≤ p
nodes, post-multiplied by e. Next, partition these columns of Ψ ′p into subsets
Θr, 2 ≤ r < p, of right homogeneous polynomials of degree r. For example,

Θ2 = {q2},
Θ3 = {q3, Aq2, Cq2},
Θ4 = {q4} ∪AΘ3 ∪ CΘ3 ∪ {(q2)2}. (15)

where AΘr and CΘr designate the sets obtained on pre-multiplication of each
element of Θr by A and C, respectively. Furthermore, a recursive algorithm
is evident from (16). In particular,

Θr = {qr} ∪AΘr−1 ∪ CΘr−1 ∪ Θ̃r, 2 < r < p, (16′)

where Θ̃r is the set of all componentwise products of two vectors, one taken
from each of Θr̄ and Θr−r̄ for each r̄ with 2 ≤ r̄ ≤ r/2.
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4 Derivation of the propagating method

Conditions (6) imply that bt and btC are orthogonal to other vectors as well.

LEMMA 2
(a) Conditions (6) are valid if and only if

bte = 2btCe = 1, (16)

and both bt and btC are orthogonal to each vector

ωr ≡ d2

dC2

{
Cr(I − C)2

}
e, r = 2, . . . , p− 2. (17)

(b) Suppose that the weights and coefficients of an s-stage method satisfy
(11) for r = 1, 2, 3, and (15). Then bt and btC are orthogonal to each of
qr, r = 2, . . . , p− 2, and bt is orthogonal to qp−1.

(c) Suppose that coefficients of stages 1 to s − 2 are chosen to satisfy (5)
and (5′) for the ASOV of Lemma 1, that cs = 1 and B2,ρ+1 satisfies (15), and
that the weights and coefficients of stages s− 1 and s satisfy (12)–(14). Then
(5) and (5′) are valid for ps−1 = ps = p− 4.

Proof
(a) If (6) holds, the orthogonality of bt and btC to (18) can be verified

by substitution. Otherwise (17), the orthogonality of bt to each of (18), and
of btC to ωp−2, forms a system of p linearly independent conditions which
imply (6).

(b) Using definition (5′′), (11) for r = 1, 2, imply that

s∑
i=1

biq
k
i ≡ btqk = bt(ACk−1e− 1

k
Cke) = 0, k = 1, . . . , p− 1, (18)

and for r = 2, 3, that

s∑
i=1

B2iq
k
i ≡ btAqk = btA(ACk−1e− 1

k
Cke) = 0, k = 1, . . . , p− 2. (19)

Since (15) holds for all stages, btC = bt − btA, and then (19) and (20) imply
that

btCqk = btqk − btAqk = 0, k = 1, . . . , p− 2, (20)

yielding the stated result.
(c) First, (12)–(14) imply that (11) holds for r = 1, 2, 3. The hypotheses

imply (15) holds for i = s (trivially), and for i = ρ + 1 = s − p + 1, so that
with (12), (15′) implies (15) is valid for all i. That is, the hypotheses in (b)
are valid, and so the conclusions of (b) hold. Since as−1,i is computed by (14),
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B2,s−1 = bsas,s−1 6= 0. Now if pi < p−4, (12) implies B2i = 0, and if pi = p−4,
the ASOV implies that qki = 0 for each k ≤ p− 4 and i ≤ s− 2, so that

B2,s−1q
k
s−1 ≡

s−1∑
i=1

B2iq
k
i = 0, k = 1, . . . , p− 4, (20′)

by (20). Hence, qks−1 = 0 establishing (5) for i = s − 1. Also, if pi < p − 5,
B2,s−1as−1,i ≡ B3i = 0, so that as−1,i = 0 establishing (5′) for i = s− 1, and
so ps−1 = p− 4. Similarly, (19) implies that bsqks = 0 for k = 1, . . . , p− 4, and
so bsasi = 0 when pi < p− 5, implying that ps = p− 4 since bs 6= 0. �

To understand why ωr is represented in (18) as a formal derivative, observe
for r ≥ 2 that the second derivative {cr(1−c)2}′′ is orthogonal to both p(c) = 1
and p(c) = c under the inner product defined by integration on [0,1].

THEOREM 1
Suppose {b, A, c} for an s-stage method satisfy (11) for r = 1, 2, 3,

and (15). Then the method is of order p if in addition both bt and btC are
orthogonal to {Θr, r = 2, . . . , p− 2}, and bt is orthogonal to Θ̃p−1.

Proof
Conditions (11) for r = 1 imply that the quadrature conditions (6) are

satisfied. It suffices to establish that bt is orthogonal to Ψ ′p, or equivalently to
{Θr, r = 2, . . . , p−1}. By the hypotheses, only the orthogonality toΘp−1 is in
doubt. Lemma 2(b) establishes that btqp−1 = 0. By (15), btA = bt(I −C) ≡
bt−btC, and then it follows from the hypotheses that btA also is orthogonal
to Θp−2. Together with the hypotheses, these imply that bt is orthogonal to
the set Θp−1 = {qp−1} ∪ AΘp−2 ∪ CΘp−2 ∪ Θ̃p−1, and so the method is of
order p. �

On one hand, Lemma 2(c) gives equations for computing coefficients of a
method, while on the other, Theorem 1 gives conditions additional to those
of Lemma 2(b) which are sufficient for the method to have order p. Next, we
condense this latter set of sufficient conditions towards those of Lemma 2(c).
All conditions other than (17) are equivalent to ensuring that certain vectors
are in the nullspace of {bt, btC}, and so we focus on minimizing its dimension.
This is achieved by refining the identification of order conditions with vectors
in Λr and Θd for 1 ≤ r + d ≤ p.

LEMMA 3
Suppose that {bt, A, c} satisfy the conditions of Lemma 2(c).

(a) If, in addition, the coefficients satisfy

(btA3)j = (btC2A)j = 0, pj = p− 5, (21)

then for every B̃r ∈ Λr, B̃rj = 0 whenever pj < p−max(4, r).
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(b) For every Rd ∈ Θd, Rjd = 0 whenever d ≤ pj ≤ p− 4.

Proof
By Lemma 2(c), (5) and (5′) hold for the ASOV of Lemma 1.

(a) Observe (btA3)j =
∑s−2
i=j+1(btA2)iaij and (btC2A)j =

∑s
i=j+1(btC2)iaij .

For pj < p− 5, either pi ≤ pj + 1 < p− 4 and (btA2)i = (btC2)i = 0 by (12),
or else pi > pj + 1 and aij = 0 by (5′). Hence, (22) is valid for all pj ≤ p− 5.

Now, we establish the result for r ≤ 4. For Brj = (btAr−1)j , pj < p−4, the
result follows by (12) for r = 1, 2, 3, and by the first expression of (22) for r = 4.
Then, (15) implies that (btCA)j = B2,j − B3,j = 0, and that (btCA2)j =
B3,j − B4,j = 0. Next, (15) implies (btACA)j = (btCA)j − (btC2A)j = 0
by the previous case and the second expression of (22). Since the result holds
for Λ1 = {bt}, and each remaining vector of Λr, r ≤ 4, is obtained by post-
multiplication of one from Λr−1 by C, the result holds by finite induction on
r ≤ 4.

The result is established for r > 4 by induction. For each r > 4 and B̃r ∈
Λr, B̃r,j is either

∑s
i=j+1 B̃r−1,iaij or B̃r−1,jcj . Using the stage suppression

conditions (5′) with the result for Λr−1 shows that the first expression is zero
when pj ≤ min(pi − 1, pi) < min (p−max(4, r − 1)− 1, p−max(4, r − 1)) =
p−max(4, r), giving the stated result. The argument for the second expression
is similar but easier.

(b) By (5), the result is valid for Rd = qd, d ≤ p − 4, and hence trivially
for all Rd ∈ Θ2. The result is proved by induction on d ≥ 2, so for each
2 ≤ c < d ≤ p − 4, we assume the result is valid for Rc ∈ Θc. For d ≤ p − 4,
Rd is one of qd, ARd−1, CRd−1, or Rb · Rc where b + c = d for b, c ≥ 2.
The result has been established for the first case. In the second case, consider
(ARd−1)j =

∑j−1
k=1 ajkRk,d−1 for d ≤ pj ≤ p− 4. If pk < pj − 1 then ajk = 0.

Otherwise, if pj − 1 ≤ pk ≤ pj then d − 1 ≤ pk ≤ p − 4, and in this case, the
inductive assumption implies Rk,d−1 = 0. Hence, each term in the summation
is zero, and the result holds. For each of the two remaining alternatives, the
result holds directly because it holds for each Rc, c < d. This completes the
inductive step, so the result holds for all d ≤ p− 4. �

THEOREM 2
Suppose the coefficients are selected to satisfy the conditions of Lemma

2(c), and (22), and that bt and btC are orthogonal to each of Aqp−3 and
Cqp−3. Then the method has order p.

Proof
The conditions of Lemma 2(c) imply that (11) is valid for r = 1, 2, 3, and

in particular the quadrature conditions (6) hold. Each remaining condition
(7) is interpreted as requiring that B̃r ∈ Λr, r ≥ 1 is orthogonal to some
Rd ∈ Θd, r + d ≤ p.

First assume that d ≤ p− 4. If pj < p−max(r, 4), Lemma 3(a) establishes
that B̃rj = 0. Otherwise, if pj ≥ p−max(r, 4) = min(p− r, p− 4) ≥ min(p−
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r, d) = d (since d ≤ p − r), then by Lemma 3(b), Rjd = 0. Hence, B̃r ·Rd =∑s
j−1 B̃rjRjd = 0, and all order conditions with d ≤ p− 4 hold.
Now we proceed by induction on decreasing r. Observe for each r ≥ 4, that

r+ d ≤ p implies that d ≤ p− 4, and for these values of r and d, the first part
establishes that B̃r ·Rd = 0. We use this to establish the same result for each
of r = 3, 2, 1 inductively whenever p − r ≥ d > p − 4. Recall that Rd takes
one of four forms implied by (16′). If Rd ∈ AΘd−1 ∪ CΘd−1, the inductive
assumption for d−1 implies that B̃r ·Rd ≡ B̃r+1 ·Rd−1 = 0. Next, for Rd ∈ Θ̃,
Rd = Rb ·Rc with b + c = d. In this case, min(b, c) ≤ [(b + c)/2] = [d/2] ≤
[(p − r)/2], where [x] is the integer part of x. Since p ≥ 6, it may be verified
by computation for each r ≥ 1 that [(p− r)/2] ≤ p− 4 with equality holding
only if p = 6 or p = 7. Hence, by Lemma 3(a) if pj = p − 4, RjbRjc = 0.
Also for r < 4, B̃rj = 0 for pj < p − 4 by Lemma 3(b), and these imply that
B̃r ·Rd ≡

∑s
j=1 B̃rjRjbRjc = 0. It remains to show that each vector of Λr is

orthogonal to qd, p− r ≥ d > p− 4.
Observe that the results of Lemma 2(b) hold, so that qd is orthogonal

to bt for d = p − 3, p − 2, p − 1, and to btC and then by (15) to btA for
d = p−3, p−2. Now continuing the induction, for r = 3, the hypotheses imply
that each of btCA and btC2 are orthogonal to qp−3. Also, with the results
that btCqp−3 = btAqp−3 = 0, (15) implies that btA2 = btA − btCA and
btAC = btC − btC2, so that these vectors also are orthogonal to qp−3, and
this completes the case for r = 3. Now, the induction for r = 2 and then for
r = 1 can be completed without further difficulty. �

The result shows that only a few constraints must be imposed in addition
to the design identified in Lemma 2(c) in order to obtain a method of order
p. Of several alternatives, we attempt to make each of Aqp−3 and Cqp−3

linear combinations of vectors in Ωp−2 ∪ Qp−2 where Ωρ = ∪ρr=2{ωr} and
Qρ = ∪ρr=2{qr} since Lemma 2(a) and (b) imply each subset is orthogonal to
both bt and btC. The proof is facilitated by representing vectors spanned by
Ωp−2 as linear combinations of ω2 and

ω̄r =
d3

dC3

{
Cr(I − C)3

}
e ≡ rωr−1 − (r + 3)ωr, r = 3, 4, . . . , p− 2. (18′)

If the weights satisfy (6), the argument used to prove Lemma 3(a) can be
extended to show that each of bt, btC, btC2 is orthogonal to ω̄r if r ≤ p− 3.

LEMMA 4
Suppose that coefficients of stages 1 to s− 2 are chosen to satisfy (5) and

(5′) for the ASOV of Lemma 1, and in addition so that

Aqp−4 =
p−3∑
r=3

Jrω̄
r +

p−3∑
r=2

J̃rqr, (22)

Aqp−3 = K2ω
2 +

p−2∑
r=3

Krω̄
r +

p−2∑
r=2

K̃rqr, (23)
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and

Cqp−3 = L2ω
2 +

p−2∑
r=3

Lrω̄
r +

p−2∑
r=2

L̃rqr (24)

are valid for components i = 1, . . . , s − 2, with J̃p−3 6= 0. Also suppose that
the homogeneous polynomials Br, r = 1, 2, 3, can be chosen to satisfy (12),
(13), (15) and (22), and that the weights and coefficients of stages s − 1 and
s are computed by (14). Then, (23)–(25) also hold for i = s− 1 and s.

Proof
The proof, which establishes and uses the fact that bt, btC, and btA are

each orthogonal to each of Aω̄r and Cω̄r for 3 ≤ r ≤ p− 3, is omitted. �

COROLLARY
Suppose that coefficients of stages 1 to s− 2 are chosen to satisfy (5) and

(5′) for the ASOV of Lemma 1 and (23)–(25). Furthermore, let cs = 1 and
B2,ρ+1 satisfy (15), and suppose that the weights and coefficients of stages
s− 1 and s satisfy (12)–(14) and (22). Then the method has order p.

Proof
Lemmas 2(c) and 4 establish that the hypotheses of Theorem 2 are valid.

�

This completes the design for the method of order p. It will be seen later
that the conditions of Lemma 4 are not easy to satisfy, so that not all of the
target families have been constructed. Possibly other alternatives may be more
fruitful.

5 Embedded and imbedded error estimators

A strategy for obtaining a Runge–Kutta pair is based on the development in
§4. For each p ≥ 6, we apply Theorem 2 to obtain a method of order p by
selecting the arbitrary parameters remaining from Lemma 1 together with bρ+1

and B3,ρ+1 to satisfy (22)–(25). In this section, we consider the possibility of
adding to this a related, but different method of order p−1. This method uses
the s stages of the first method together with the additional stage defined with
cs+1 = 1 and as+1,i = bi, i = 1, . . . , s. For this development, it is convenient
to append the coefficients defining this stage to the matrices A and C, and the
vector c, and to append 0 to the vector bt to define new matrices and vectors
of size s + 1. Furthermore, this extension naturally induces an expansion of
the vectors in Λr, Θd and Ωr, which are henceforth interpreted to be subsets
of IRs+1. When required, restriction to only the first s components will be
denoted by a prime, so for example, Ω′r is a subset of IRs. To satisfy conditions
of order p− 1 for the second method, we have the s+ 1 weights of the vector
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b̂t and perhaps some arbitrary coefficients remaining from Lemma 1 available.
To motivate their choice, we examine the order conditions that have to be
satisfied. For this, we denote Nr = span(Ωr ∪Θ2 ∪ · · · ∪Θr), so that bt is a
vector which is orthogonal to (I − 2C)e and Np−1, and for which bte = 1. In
some respects, the proofs which follow resemble those in [8].

LEMMA 5
(a) If (bt, A, c) represents a method of order p, and b̂t −bt is a nonzero

vector that is orthogonal to each vector of
(
∪p−2
r=0{Cre}

)
∪
(
∪p−2
r=2Θr,

)
, then

(b̂t, A, c) represents a different method of order p− 1.
(b) Suppose for a method of order p that span({(I − 2C)e} ∪ Np−2) is a

proper subspace of the span({(I − 2C)e}∪Np−1). Then a different method of
order p− 1 which uses the s+ 1 stages can be constructed.

Proof
(a) Since the method with weights bt is of order p, the hypotheses imply

that b̂t satisfies each of the quadrature conditions (6) for r = 1, . . . , p−1, with
b̂t replacing bt, and that b̂t is orthogonal to each vector of ∪p−2

r=2Θr. These
are precisely the conditions that the method with weights b̂t be of order p−1.
Since b̂t − bt 6= 0, the new method is different from that with weights bt.

(b) Since bt ∈ IRs+1 and bte = 1, the nullspace of bt satisfies

dim(span ({(I − 2C)e} ∪ Np−1)) ≤ s.

Therefore, bte 6= 0 and the assumption of proper inclusion implies that

span ({e} ∪ {(I − 2C)e} ∪ Np−2)

is a proper subspace of IRs+1. Hence, there exists a nonzero (s+1)-vector or-
thogonal to this subspace, and we denote it by b̂t − bt. Furthermore, this
subspace contains each of the vectors specified by part (a), and so b̂t deter-
mines the required weights of a different method of order p− 1. �

If a Runge–Kutta pair exists, then the conditions of Lemma 5(a) hold,
and these imply that each of bt, btC, b̂t is orthogonal to Np−2. For the two
methods to be different, these three vectors must be linearly independent, and
hence, dim(Np−2) ≤ number of stages−3 (i.e. s − 3 for conventional pairs
and s − 2 for FSAL pairs). Lemma 5(b) indicates what difficulties must be
overcome to obtain an embedded method of order p − 1. For a FSAL pair,
it becomes necessary to make components for stage s + 1 in each vector of
{(I − 2C)e} ∪ Np−2 consistent with choosing the vector b̂t to have b̂s+1 6= 0.
Alternatively, a pair which uses only the original s stages could be obtained if
the subspace of IRs spanned by {(I − 2C)e′}∪N ′p−1 has dimension s− 2. It is
not clear that either alternative can be achieved for all values of p of interest,
although some direction is possible.
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LEMMA 6 (FSAL pairs)
Suppose for a method determined by the Corollary to Lemma 4, that the

vector space spanned by {(I − 2C)e′}∪N ′p−2 is a nullspace of b′ of dimension
s− 1, and that conditions (23)–(25) are valid for stage s+ 1. Then a different
method of order p− 1 which uses the s+ 1 stages can be constructed.

Proof
The distinctness of the nodes c1, cs−p+2, . . . , cs required by Lemma 1 is

assumed, and this is sufficient to imply that the p vectors in the set {e′}∪{(I−
2C)e′}∪Ω′p−1 are linearly independent. Now, choose the basis of the nullspace
span

{
(I − 2C)e′} ∪ N ′p−2

)
of b′t by appending to {(I−2C)e′}∪Ω′p−2, a basis

of the remaining unspanned vectors of ∪p−2
r=2Θ

′
r. Let B′p−2 denote the subset of

this basis which excludes (I − 2C)e′, and let Bp−2 denote the corresponding
vectors of IRs+1. Then the hypothesis implies that each of B′p−2 and Bp−2

contain exactly s− 1 linearly independent vectors.
Now for each nonzero value of b̂s+1, the elements of an s-vector b̂′t may be

uniquely determined so that b̂te = 1 and b̂t is orthogonal to the s− 1 linearly
independent vectors of {(I − 2C)e} ∪ Bp−2.

It remains to show that this choice of b̂t satisfies all of the conditions of or-
der p−1. We need to show that b̂t is orthogonal to span ({(I − 2C)e} ∪ Np−2)
and it is sufficient to show that {(I − 2C)e}∪Bp−2 is a basis for this set. This
is established by considering that each vector of span ({(I − 2C)e} ∪ Np−2) is

either in span ({(I − 2C)e} ∪Ωp−2), or in span
(
∪p−2
r=2{Θr}

)
, or else it is a

linear combination of vectors in these two sets. In the first case, it is spanned
by vectors in the basis, by the choice of B′p−2. Next, observe for every vector in

span
(
∪p−2
r=2{Θr}

)
, element s+1 is equal to zero because stage s+1 has order

p, and this implies the result for the second case. On reviewing the conditions
defining the method, it is found that the only order conditions that are satis-
fied specifically because a vector in the nullspace of bt is a linear combination
of the two sets are identified by (23)–(25). As these conditions hold for stage
s+ 1 by hypothesis, this completes the proof. �

LEMMA 7 (Conventional pairs)
Suppose for a method determined by the Corollary to Lemma 4, that the

vector space spanned by {(I−2C)e′}∪N ′p−2 is a nullspace of b′ of dimension ≤
s − 2. Then a different method of order p − 1 which uses only the original s
stages can be constructed.

Proof
With notation used in the proof of Lemma 6, b′te′ = 1 and the hypothesis

implies that {e′}∪ {(I − 2C)e′}∪B′p−2 is a set of not more than s− 1 linearly
independent vectors of IRs. Hence, there is a nonzero vector b̂′t−b′t orthogonal
to this set. Since this set spans {(I − 2C)e′} ∪Ω′p−2 ∪

(
∪p−2
r=2Θ

′
r

)
, it follows
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that b̂′t satisfies all of the conditions of order p− 1, and is different from b′t.
�

For p = 6 and p = 7, reducing the size of the basis suggested by Lemma 7
has been achieved by choosing parameters to make the set Ωp−2 ∪ {qp−3} ∪
{qp−2} linearly dependent. Possibly other choices may achieve the same result.

We conclude this section with a general algorithm which may be used to
obtain weights for many of the embedded methods proposed. For cs−1 6= 1,
define

b̂i =
2B3i − bi(1− ci)(cs−1 − ci)

(1− ci)(1− cs−1)
, i = 1, . . . , s− 2,

b̂s−1 = 0, (25)

and then define b̂i, i = s, s+ 1, to satisfy

b̂te = 1, b̂tqp−3 = 0. (26′)

It is easily verified that the solution of these equations satisfies many of the
conditions of order p− 1.

6 Algorithms for three families

So far only families with p = 6 and p = 7 have been constructed. For some
of these, algorithms for finding the nodes and coefficients explicitly, as solu-
tions of linear systems, and occasionally as roots of polynomials follow. For
actual computation, these have been implemented using the MAPLE program-
ming language. Often, the solutions will involve radicals (if the equations are
solvable by a direct method), although in the pairs displayed, radicals have
been avoided. Furthermore, for each displayed pair, the 2-norms of the vectors
of leading error coefficients for the lower-order and higher-order methods are
recorded as Âp−1,2 and Ap2, respectively. See [5] and [9] for some comparison
values.

EXAMPLE 1
There exists a family of FSAL pairs of orders 5 and 6 with seven arbitrary

parameters, c2, . . . , c7, and a52.

ALGORITHM
Select eight nodes so that c1 = 0, c4, c5, c6, c7, c8 = 1 are distinct, c2 6= 0

and c3 is arbitrary. For the ASOV=(6,1,2,2,2,2,2,2,6:5), select the coefficients
of stages 1 to 6 to satisfy (5), (5′), and

Aq2 = J̃3q3,

Aq3 = K̂3C(I − C)(I − 5C + 5C2)e + K̃2q2 + K̃3q3 + K̃4q4,

Cq3 = L̂3C(I − C)(I − 5C + 5C2)e + L̃2q2 + L̃3q3 + L̃4q4. (26)
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To accommodate stage 1 easily, and as well anticipate the derivation of an
embedded method, the linear combinations of {ω2, ω̄3, ω̄4} proposed in (24)
and (25) have been replaced by a multiple of a single polynomial, which is
orthogonal to each of bt, btC, and is zero for each of c1 = 0 and cs+1 = 1.
The coefficients on the right sides of (27) are determined by stages 2 to 5,
and one coefficient of stage 5 remains arbitrary (chosen to be a52 without
loss of generality). Observe that each equation of (27) is trivially valid for
stage 9. Next, select b2 = B22 = B32 = 0, and b3, B23 and B33 to satisfy
(bt(I − C)(c7I − C)A)2 = (B2 − bt(I − C))3 = (B3A)2 = 0 so that (15) and
(22) are valid. Then choose left homogeneous polynomials to satisfy (12) and
(13), and compute the coefficients of stages 7 and 8 by (14). Finally, select
the weights b̂t to satisfy (26) and (26′). This yields a family which satisfies
Lemmas 4 and 6. �

EXAMPLE 2
There exist two families of conventional pairs of orders 5 and 6 with six

arbitrary nodes c2, . . . , c7.

ALGORITHM
Select eight nodes so that c1 = 0, c4, c5, c6, c7, c8 = 1 are distinct, c2 6= 0

and c3 is arbitrary. For the ASOV=(6,1,2,2,2,2,2,2:6,5), select the coefficients
of stages 1 to 6 to satisfy (5), (5′), and (27). It is again convenient to confine
the representation of each of (24) and (25) to a single vector of Ω4, again
to accommodate stage 1, and in this case, the need to restrict a52 so that
{ω2, ω̄3, ω̄4, q2, q3, q4} is a linearly dependent set. After obtaining the
coefficients in (27), the linear dependence of the last set yields a quadratic in
a52, and each choice leads to a pair. The remaining coefficients are obtained
exactly as in Example 1. This yields a family which satisfies Lemmas 4 and 7,
and such a pair appears in Table 4. �

In addition to these two families, some other special families for p = 6 may
be obtained for certain values of the nodes. One of these pairs is displayed in
[10].

For p = 7, attempts to obtain a family of FSAL pairs have been unsuccess-
ful. Accordingly, the following result is rather surprising.

EXAMPLE 3
There exist two families of conventional pairs of orders 6 and 7 with seven

arbitrary nodes c2, c4, . . . , c9.

ALGORITHM
Select ten nodes so that c1 = 0, c5, c6, c7, c8, c9, c10 = 1 are distinct, c2 6= 0,

c3 = 2c4/3 and c4 is arbitrary. For the ASOV=(7,1,2,3,3,3,3,3,3,3:7,6), select
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Table 4 A Conventional (8, 5:6) Pair: Six nodes arbitrary, A72 ≈ .000105, Â62 ≈ .00808.
0

1
5

1
5

1
6

7
72

5
72

1
3

− 1
18

− 5
18

2
3

1
2

13
344

− 75
344

15
43

57
172

3
4

− 287
1216

765
1216

1239
1216

− 1155
608

1505
1216

11
12

19723
59904

− 275
1872

− 5335
6656

12397
6656

− 16555
19968

209
416

1 − 1409
726

− 45
22

915
77

− 1480
77

559
33

− 1520
231

1664
847

bt 113
2475

0 239
875

9
3500

43
125

1216
7875

1664
9625

11
1500bbt 7

90
0 18

175
9
25

0 608
1575

0 11
150

the coefficients of stages 1 to 8 to satisfy (5), (5′), and

Aq3 = Ĵ4C(4I − 30C + 65C2 − 35C3)e +
4∑
r=2

J̃rqr,

Aq4 = (K̂4 + K̂5C)C(4I − 30C + 65C2 − 35C3)e +
5∑
r=2

K̃rqr,

Cq4 = (L̂4 + L̂5C)C(4I − 30C + 65C2 − 35C3)e +
5∑
r=2

L̃rqr. (27)

Table 5 A Conventional (10,6:7) Pair: Seven nodes arbitrary, A82 ≈ .000172, Â72 ≈ .00885.
0

2
3

2
3

1
3

1
4

1
12

1
2

1
8

0 3
8

1
4

1
8

0 3
16

− 1
16

1
3

217
1458

0 73
162

− 82
729

− 112
729

1
6

277
5832

0 − 119
648

59
729

344
729

− 1
4

5
8

− 3787
165888

0 − 1745
9216

54149
165888

− 2359
10368

357
2048

1155
2048

3
4

− 823
4080

0 − 399
544

11
48

− 4
3

567
544

567
374

216
935

1 151
180

0 2 157
18

107
9

− 351
28

− 432
77

− 2592
385

17
7

bt 31
630

0 0 104
105

16
45

− 243
490

486
2695

− 2048
2695

272
441

4
63bbt 17

210
0 0 − 146

105
− 32

35
837
490

108
385

3072
2695

0 2
21
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Again the basis vectors of Ω5 are conveniently selected to accommodate the
first stage and the necessity to restrict a72 so that Ω5 ∪ {q4} ∪ {q5} is a
linearly dependent set. When coefficients from (28) and those of stages 2–7 are
represented in terms of a72, this linear dependence is quadratic in a72 and each
choice leads to a pair. Next, select bi = B2i = B3i = 0, i = 2, 3, and b4, B24

and B34 to satisfy (bt(I −C)(c9I −C)A)3 = (B2−bt(I −C))4 = (B3A)3 = 0
so that (15) and (22) are valid. Then choose left homogeneous polynomials to
satisfy (12) and (13), and compute the coefficients of stages 9 and 10 by (14).
Finally, select the weights b̂t to satisfy (26) and (26′). This yields a family
which satisfies Lemmas 4 and 7. One pair of this type is displayed in Table 5.
�
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