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Abstract

Pairs of explicit Runge-Kutta methods of different orders of accuracy form efficient

algorithms for treating non-stiff ordinary differential equations. While parametric families

of different types and orders are known, the characterization of pairs of orders p − 1 and

p, p ≥ 6, remains incomplete, and the search for better pairs continues.

A scheme to distinguish between pairs of different types has been developed after

studying a variety of known methods and pairs. The resulting classification scheme in-

cludes almost all known pairs in a natural way, and provides designs which lead to new

pairs of several types. To derive a new family of pairs, a promising design is selected

from the classification, and the corresponding order equations are solved by adapting or

generalizing simplifying conditions that previously facilitated the construction of pairs of a

more restricted design. In addition to motivating and describing the classification scheme,

examples of some new pairs are given.
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1. Introduction

The problem of interest is a vector initial value problem

(1) y′ = f(t, y), y(t0) = y0,

which has a unique solution if f : R × RN → R is Lipschitz continuous in y: RN → RN.

For many acceptable functions f , even if f is a function of t alone, it might not be possible

to represent the solution exactly in terms of elementary functions. Often the solution of

the restricted problem

(1′) y′ = f(t), y0 = y(t0).

(equivalently, a definite integral) may be approximated recursively at a sequence of points

t0, t1, ... by a quadrature rule of the form

(2) y(tn+h) = y(tn)+

∫ h

0

f(tn+st)ds ≈ yn+1 = yn +h

s∑
i=1

bif(tn +cih), n = 0, 1, ....

Usually, the nodes {ci, i = 1, .., s} and the weights {bi, i = 1, .., s} are selected so that (2)

is exact whenever y is a polynomial of some specified degree p. Equivalently, the nodes

and weights are selected to satisfy the quadrature conditions

(3) Qτ ≡
s∑

i=1

bic
τ−1

i − 1

τ
= 0, τ = 1, .., p.

For certain choices of the nodes, these can be satisfied for p as large as 2s−1, and otherwise

for any s nodes of which p are distinct, (3) can be satisfied for any s ≥ p. If p = s, then (3)

uniquely determine the weights; otherwise, s − p weights may be chosen arbitrarily. This

perspective helps to motivate a strategy for deriving explicit Runge-Kutta methods.

For the more general problem (1), an explicit Runge-Kutta method propagates an

approximation yn+1 to y(xn + h) from step-to-step by

(4) yn+1 = yn + h
s∑

i=1

bifni n = 0, 1, ....
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where approximations to corresponding derivative values are given by

(4′) fni = f(tn + cih, yn + h
i−1∑
j=1

aijfnj), i = 1, .., s.

The error may be estimated as the difference between yn+1 and

(5) ŷn+1 = yn + h

s∑
i=1

b̂ifni .

For a single method defined by (4) and (4′), the coefficients are selected primarily to

maximize its order of accuracy p; if an error estimator is used, the coefficients and the

additional weights are further constrained so that (5) has order of accuracy p − 1. In

either case, some parameters can be selected arbitrarily, and hence a family of methods or

pairs of methods may be found to satisfy the order conditions. In implementing a pair of

formulas, either may be used to advance the approximation from step to step. The design

of some pairs depends on which choice is to be made, and this is indicated later. For

others, the structure of the method is independent which approximation is propagated,

and accordingly no attempt has been made to assign or recommend such a choice.

Since Kutta [17] characterized a family of fifth order methods in 1901, different types

of methods of moderate and high orders have been proposed in the literature. More

recently, families of pairs of methods requiring a minimum (or near minimum) number of

derivative evaluations have been derived by Fehlberg [14], Butcher [4], Verner [32], and

Prince and Dormand [23]. Yet, the characterization even for pairs of methods of order

p = 6 requiring eight stages remains incomplete. Some efforts have been made to improve

this situation. Verner [34] determined explicit formulas which directly relate three known

families of methods. In other recent work, Sharp [29] develops new pairs of low orders.

This article describes a tool that has been fruitful in the derivation of other new pairs

(and as well the construction of interpolants [37,30]) of Runge-Kutta methods. First, app-

proaches that have contributed to the solution of the order equations are contrasted by

reviewing various methods and pairs of methods. Observed similarities and differences

allow for pairs of methods to be separated into different classes. While this classifica-

tion scheme does not naturally include all types of pairs examined, it has improved our

understanding of the basic design in many known pairs, and as a result, led to the construc-

tion of some new types of pairs. Other new pairs are currently under development. The
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immediate benefit of this approach is a more complete characterization of Runge-Kutta

pairs. It is also possible that this approach will be more broadly applicable, for example,

for constructing explicit general linear methods, and therefore will be of wider general

interest.

In the next section, the quadrature equations (3) provide a useful perspective for ana-

lyzing various elements of the structure of Runge-Kutta methods. By separating different

types of order equations, strategies for deriving new methods are proposed. Section 3

emphasizes differences in the underlying structures of some single methods. Section 4 con-

trasts the structures of some known error-estimating pairs of methods. The classification

scheme and its aspects are described in Section 5. Finally, examples of some new types of

methods are given in illustration.

2. Quadratures and Sub-quadratures

It is convenient to interpret the Runge-Kutta formula (4) as an extension to (2) in

which y(tn + cih), i = 1, .., s, is estimated recursively by an internal sub-quadrature rule:

(6) yni = yn + h

i−1∑
j=1

aijf(tn + cjh, ynj), i = 1, .., s,

for c1 = 0 and yn1 = yn. Accordingly, the linking coefficients {aij = 0, 1 ≤ j < i ≤ s}
may be determined using certain sub-quadrature expressions

(7) qτ
i ≡

i−1∑
j=1

aijc
τ−1

j − cτ
i

τ
, i = 1, .., s, τ = 1, .., p− 1.

In particular, most methods are constructed so that these coefficients satisfy the sub-

quadrature conditions

(7′) qτ
i = 0, i = 1, .., s, τ = 1, .., pi,

for a certain integer vector of stage-orders, SOV = (p1, p2, .., ps). In this article, we require

more: stage i will have stage-order pi if the linking coefficients satisfy both (7′) and the

stage suppressing conditions

(7′′) aij = 0, pi > pj + 1.
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Further, it is convenient to append the quadrature orders p and p − 1 of the approxi-

mating stages (4) and (5) to these SOVs usually following a colon to give an augmented

stage-order vector (ASOV). For methods in which an approximating stage is ”reused”,

its quadrature order will be included in the basic SOV. For example, a method with

ASOV=(5,1,2,2,2,2:5,4) (equivalently (5,1,2,2,2,2:4,5)) requires six stages to give two in-

dependent approximations of orders 4 and 5, whereas one with ASOV=(5,1,2,2,2,2,5:4)

requires the first six stages to give an approximation of order 5, and all seven of these

stages to give the additional approximation of order 4. Often, but not necessarily, these

quadrature orders will be the orders of the approximating stages.

Also, it is usually convenient to display the nodes, weights and linking coefficients of

an explicit Runge-Kutta method in the format of a Butcher tableau.

Tableau 1: A Butcher Tableau
c1

c2 a21

c3 a31 a32

. . . .

. . . . .

cs as1 as2 . . as,s−1

bp b1 b2 . . . bs

For an error-estimating pair, the weights of (5) will be appended to this table. To obtain a

method of order p, the coefficients must be chosen to satisfy the algebraic order conditions,

and these may be most conveniently enumerated using a one-to-one mapping onto the set

of rooted trees developed by Butcher[1]. For p ≥ 5, s internal stages with s > p are needed

[3], and the order equations can be separated into four different groups. Using (3) and (7),

the groups for p = 5 illustrate this separation.

5 Quadrature equations:

(3)

s∑
i=1

bic
τ−1

i − 1

τ
= 0, τ = 1, .., 5,

6 Basic sub-quadrature equations

(8′)

s∑
i=1

bi{
i−1∑
j=1

aijc
τ−1

j − cτ
i

τ
} = 0, τ = 2, 3, 4,
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(8′′)
s∑

i=1

bi

i−1∑
j=1

aij{
j−1∑
k=1

ajkcτ−1

k −
cτ
j

τ
} = 0, τ = 2, 3,

(8′′′)

s∑
i=1

bi

i−1∑
j=1

aij

j−1∑
k=1

ajk{
k−1∑
l=1

aklcl −
c2
k

2
} = 0,

5 Extended sub-quadrature equations

(9′)
s∑

i=1

bic
σ
i {

i−1∑
j=1

aijc
τ−1

j − cτ
i

τ
} = 0, σ ≥ 1, τ ≥ 2, σ + τ ≤ 4,

(9′′)

s∑
i=1

bic
ν
i

i−1∑
j=1

aijc
τ
j {

j−1∑
k=1

ajkck −
c2
j

2
} = 0, ν + τ = 1,

1 Nonlinear sub-quadrature equation

(10)

s∑
i=1

bi{
i−1∑
j=1

aijcj −
c2
i

2
}2

= 0.

In this formulation, sub-quadratures are explicit in all but the quadrature conditions (3).

This indicates why a choice of coefficients which makes low-order sub-quadrature expres-

sions equal to zero can help to minimize the number of stages required.

While Butcher’s elegant characterization of the order conditions has been known for

some time, their solution for p ≥ 6 is still incomplete. Nevertheless, most known methods

can be derived by solving each group of equations separately, although not independently.

In an analogous way that p weights may be chosen to satisfy the quadrature conditions (3),

certain homogeneous polynomials of low degree in the linking coefficients may be selected

to satisfy the basic sub-quadrature conditions (8). Low order sub-quadrature expressions

and the remaining homogeneous polynomials in the linking coefficients are chosen equal

to zero, and some constraints are placed on the nodes in order to satisfy the remaining

equations. Some detail in solving (8) appears in §3, and [35,39] use this approach to derive

some pairs of design order p ≥ 6.
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3. The Structure of Some Single Methods

Here, we shall consider the design of methods of several orders for which a minimum

or near minimum number of stages is required. For many methods, particularly those

of orders p ≥ 5, the stage-order vector is a determining factor in the number of stages

required. Hence, in representing each method as a Butcher tableau an appended column

specifies the augmented stage-order vector.

For example, Euler’s method [12] is represented by

Tableau 2: The Euler method

0 1

b1 1 1

In 1895, Runge [24] developed a pair of methods, each of order 2, which he suggested could

be used to approximate the solution and estimate the error, respectively.

Tableau 3: A pair of methods designed by Runge

0 2

1

2

1

2
1

b2 0 1 2

0 2

1 1 1

1 0 1 1

b2 1

2
0 1

2
2

By 1905, he had extended this treatment [25] to consider the widely-publicized method of

order 4:

Tableau 4: The Runge-Kutta method

0 4

1

2

1

2
1

1

2
0 1

2
1

1 0 0 1 1

b4 1

6

1

3

1

3

1

6
4
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In the interim, Kutta [17] showed that coefficients of methods up to order 5 could

be represented parametrically, and had constructed a family of six-stage methods of this

order. He selected two particular methods of this family for display.

Tableau 5: Two order 5 methods designed by Kutta

0 5

1

5

1

5
1

2

5
0 2

5
2

1 9

4
-5 15

4
2

3

5
- 63

100

9

5
- 13

20

2

25
2

4

5
- 18

75

4

5

2

15

8

75
0 2

b5 17

144
0 100

144

2

144
- 50

144

75

144
5

0 5

1

3

1

3
1

2

5

4

25

6

25
2

1 1

4
-3 15

4
2

2

3

2

27

10

9
- 50

81

8

81
2

4

5

2

25

12

25

2

15

8

75
0 2

b5 23

192
0 125

192
0 - 27

64

125

192
5

The presence of errors in both tables of [17] indicates that even for p = 5, solution

of the order equations is not a trivial exercise. This family of methods have two features

common to high-order explicit methods: both b2 = 0, and s > p for orders p > 4. In

contrast, another feature common to the Kutta methods, namely a65 = 0, does not occur

in more recent methods. While additional imbedded approximations of order 4 can be

constructed for each member of this family, the error estimator that would be obtained is

somewhat unreliable. Nevertheless, the generality of Kutta’s formulation was a substantial

contribution particularly as it appeared so early in the development of these methods.
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It wasn’t until the 1950′s that Konen and Luther [16,18,19] completed the classification

of methods of order 5 with b2 = 0. Even so, more methods of order 5 for which b2 6= 0

were subsequently constructed by Cassity [6]. Other methods with b2 6= 0 rely on selecting

some nodes to be equal. Indeed, it appears likely that Cassity’s methods may be the only

minimal stage methods with b2 6= 0 for which the nodes are all distinct. Observe that

since q2
2 6= 0, equation (10) implies that at least one of the weights must be negative.

Further, since there are six non-zero weights, one weight may be chosen independently of

the quadrature conditions (3).

Tableau 6: A Cassity method of order 5 with b2 6= 0

0 5

1

7

1

7
1

5

14
- 367

4088

261

584
1

9

14

41991

2044
- 2493

73

57

4
1

6

7
- 108413

196224

58865

65408

5

16

265

1344
1

1 - 204419

58984

143829

58984

171

202

2205

404
- 432

101
1

b5 1

9

7

2700

413

810

7

450

28

75
- 101

8100
5

Another observation is basic to the structure of most methods displayed. For such

a method, all stages with non-zero weights (except the first), have the same stage-order.

Since these stages are foremost in the propagation of a solution, we shall designate their

order as the dominant stage-order (DSO) of a method. For example, DSO=2 for the Kutta

methods, and DSO=1 for the Cassity methods. For many, but not all, minimum stage

methods of orders p ≥ 5, the DSO is either p − 3 or p − 4.

Further, many methods may be constructed using homogeneous polynomials of the

coefficients defined by B1i = bi, i = 1, .., s, and

(11) Brj =

s+2−r∑
i=j+1

Br−1,iaij , j = 1, .., s + 1 − r, r = 2, .., ρ,

for some ρ ≤ p. Consider, for example, the Kutta methods with DSO=2. Only q2
2 6= 0.
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Hence, equations (3) and (8) including q2
i imply that

(12)
s+1−r∑

i=2

Br,iq
2
i = 0, r = 1, .., 3,

or equivalently b12 = B22 = B32 = 0. Further, just as equations (3) uniquely determine

the weights, the basic sub-quadrature equations (8) uniquely determine the remaining

homogeneous polynomials for this method. For example, with s = 6, p = 5, {B31, B33, B34}
are uniquely determined to satisfy (8′′) rewritten in the form

(13)

4∑
i=1

B3ic
τ−1

i =
1

τ(τ + 1)(τ + 2)
, τ = 1, 2, 3.

These choices also satisfy some of the conditions in (9) and (10); others are satisfied

by suitable constraints on the nodes. After choosing coefficients {aij, i = 1, .., s + 1 − ρ}
to satisfy (7′) and (7′′) for an appropriate augmented stage-order vector, homogeneous

polynomials chosen to satisfy analogs of (12) and (13) may be used recursively with (11)

to determine the remaining coefficients. In methods and pairs yet to be examined, it

will often be observed that p = DSO + ρ where ρ is the highest degree of homogeneous

polynomials computed by equations analogous to (13).

Tableau 7: A Butcher seven-stage method of order 6

0 6

5∓
√

5

10

5∓
√

5

10
1

5±
√

5

10

∓
√

5

10

5±2
√

5

10
2

5∓
√

5

10

−15±7
√

5

20

−1±
√

5

4

15∓7
√

5

10
2

5±
√

5

10

5∓
√

5

60
0 1

6

15±7
√

5

60
3

5∓
√

5

10

5±
√

5

60
0 9∓5

√
5

12

1

6

−5±3
√

5

10
3

1 1

6
0 −55±25

√
5

12

−25∓7
√

5

12
5 ∓ 2

√
5 5±

√
5

2
3

b6 1

12
0 0 0 5

12

5

12

1

12
6

While several eight-stage methods of order 6 are known, Butcher [2] was the first

to construct such a method requiring only seven stages. His strategy exploits certain
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simplifying assumptions which reduce the total number of algebraic equations to be solved.

This approach in tandem with his scheme for enumeration of the order conditions prevail

in most strategies for solving the order conditions. He observes that the particular method

”is interesting in that it is an explicit counterpart of a certain four-stage implicit process

... the possibility is naturally suggested that counterparts exist for higher order implicit

processes as well.” For this method, we observe that the DSO=3. Also seven-stage methods

with the DSO=2 exist, and an example is included later.

Butcher’s challenge was taken up by Cooper, and Curtis independently, each of whom

constructed eleven-stage methods of order 8 based on the five-node Lobatto quadrature

rule. Cooper and Verner [7] establish the existence of a discrete set of methods of arbitrary

order p ≥ 8 requiring (p2 − 7p + 14)/2 stages. Curtis [8] characterized a four-parameter

family of eleven-stage methods of order 8, and subsequently [9] found eighteen-stage meth-

ods of order 10. Verner [31] later showed that methods of the Curtis type existed with

p ≥ 12 requiring (p2 − 12p + 58)/2 stages.

Tableau 8: Template for Cooper-Verner eleven-stage methods of order 8

`0 = 0 8

`2 = .5 X 1

`2 X X 2

`1 X X X 2

`1 X 0 X X 3

`2 X 0 X X X 3

`3 X 0 X X X X 3

`3 X 0 0 0 X X X 4

`2 X 0 0 0 X X X X 4

`1 X 0 0 0 X X X X X 4

`4 = 1 X 0 0 0 X X X X X X 4

b8 ω0 0 0 0 0 0 0 ω3 ω2 ω1 ω4 8

The stage-order vectors and the patterns of zero coefficients and weights for the two

methods of order 8 are of interest. For each, DSO = 4. Nodes and weights of a Lobatto
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rule are denoted by {`i, i = 0, .., 4} and {ωi, i = 0, .., 4}, and non-zero coefficients by X.

In the Curtis methods, some nodes (A for arbitrary, X for non-zero) need not be Lobatto

nodes. The patterns are sufficiently different to distinguish the methods as members of two

non-intersecting families. Yet, for both methods, weights corresponding to sub-dominant

stages are all equal to zero. This property is not necessary even in methods of higher

orders.

Tableau 9: Template for Curtis eleven-stage methods of order 8

`0 = 0 8

A X 1

X X X 2

X X 0 X 3

A X 0 X X 3

`3 X 0 0 X X 4

`1 X 0 0 X X X 4

`2 X 0 0 X X X X 4

`3 X 0 0 X X X X X 4

`1 X 0 0 X X X X X X 4

`4 = 1 X 0 0 X X X X X X X 4

b8 ω0 0 0 0 0 ω3 ω1 ω2 ω3 ω1 ω4 8

Indeed, the theme of reducing the number of stages to achieve a particular order has

another facet. Hairer[15] derived seventeen-stage methods of order 10. His construction

relied on counterbalancing a non-zero value of b2 by choosing c2 = c16 and b2 + b16 = 0.

Analogous conditions were required of stages 3, 6 and 7. The nodes and weights focus

on those of a six-node Lobatto quadrature rule, with other nodes being determined by

supplementary orthogonality conditions. Six arbitrary parameters are subscripted by A,

and one more is utilized to satisfy a particular constraint of order 11. Non-zero coefficients

are denoted by X and Y with the latter identifying coefficients which lead to special

cancellations. These and other coefficients equal to zero in Tableau 10 indicate much of

the structure of this seven-parameter family of methods. A significant feature in this family
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is the fact that the stage-order vector initially increases to p-5, and then decreases to 1.

This is in distinct contrast to each previous type in which the SOV is increasing. In the

next section, a related method of order 6 is displayed.

Tableau 10: Template for Hairer seventeen-stage methods of order 10

`0 = 0 10

PA X 1

Q X Y 2

X X 0 X 3

X X 0 X X 3

RA X 0 0 Y Y 4

S X 0 0 Y Y X 4

X X 0 0 0 X X X 4

`2 X 0 0 0 0 X X X 5

`4 X 0 0 0 0 X X X X 5

`3 X 0 0 0 0 X X X X X 5

`1 X 0 0 0 0 X X X X X X 5

R X 0 0 Y Y X X X X X X X 4

S X 0 0 Y Y X X X X X X X X 4

Q X Y 0 0 0 Y Y 0 0 0 0 0 Y Y 2

P X 0 Y 0 0 0 0 0 0 0 0 0 0 0 Y 1

`5 = 1 X Y Y 0 0 X X X X X X X X X Y Y 5

b10 ω0 −p −q 0 0 −r −s 0 ω2 ω4 ω3 ω1 rA sA qA pA ω5 10
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4. The Development of Runge-Kutta Pairs

While strategies for deriving methods of moderate and high order evolved, the need

for simultaneous error estimates gained prominence. For Runge-Kutta methods, pairs of

approximations of different (usually adjacent) orders of accuracy provide the most efficient

algorithms. Early attempts to derive such pairs were unduly influenced by the difficulty

in satisfying the necessary order constraints (essentially duplicated for the two methods).

Five-stage methods of design order 4 obtained by Merson [20] and Scraton [28] were of

order four only for certain problems. Fehlberg [13], Sarafyan [27] England [11] were early

developers of some six-stage pairs of orders 4 and 5. However, the major impetus to

this area of development was Fehlberg’s derivation [14] of pairs of orders p − 1 and p for

p = 6, 7, 8, 9. By choosing two nodes c1 = cs−1 = 0 for a method of order p, and appending

one additional stage at cs+1 = 1, he derived a ’matched’ method of order p − 1. Pairs in

which both approximations use only the initial s stages are denoted by (s, p-1:p), and a

pair selected by Fehlberg follows.

Tableau 11: A Fehlberg (8, 5:6) pair

0 6

1

6

1

6
1

4

15

4

75

16

75
2

2

3

5

6
- 8

3

5

2
2

4

5
- 8

5

144

25
−4 16

25
2

0 - 11

640
0 11

256
- 11

160

11

256
3

1 93

640
- 18

5

803

256
- 11

160

99

256
1 2

1 361

320
- 18

5

407

128
- 11

80

55

128
0 0 2

b6 7

1408
0 1125

2816

9

32

125

768

5

66

5

66
0 6

b5 31

384
0 1125

2816

9

32

125

768
0 0 5

66
6

While this derivation was a substantial advance, each method constructed was defi-

cient in treating the quadrature problem (1′) (and any problem containing a quadrature
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component) – the error estimate is zero while the error may be nonzero. In response to a

need for error-estimating pairs without this deficiency, two types of formulas of a different

design were derived.

Tableau 12: A Butcher (9*, 5(6)) pair

0 6

2

27

2

27
r =

√
2769 1

1

9

1

36

1

12
3

1

6

1

24
0 1

8
3

1

3

1

6
0 - 1

2

2

3
3

1

2

15

8
0 - 63

8
7 - 1

2
3

2

3

2269−49r
1164

0 −6545+141r
776

4491−91r
582

−2175+35r
2328

215+r
582

3

5

6

446107−7484r
1164

0 −131141+2256r
776

213494−3818r
18165

−12381+617r
18165

−6436−138r
18165

16173+89r
36330

3

b5 73−11r
1020

0 0 −3054+55r
1020

3258−55r
510

−2952+55r
510

2901−55r
1020

−162+11r
1020

5

b6 78−r
390

0 0 −169+4r
260

299−5r
130

−1053+20r
390

299−5r
260

−1692+4r
260

78−r
390

6

In pairs designed by Butcher [4], the approximation of lower order is computed first.

Then the original stages and the derivative evaluation of the first approximation are used

to compute the approximation of higher order. For example, for the pair of orders 5 and 6

in Tableau 12, nine stages are needed. The ninth stage may be reused in the first stage of

the next step if the fifth order approximation is propagated. This design is denoted here and

later by placing the order of the approximation requiring the extra stage in parentheses,

and placing an asterisk on the total number of stages.

In contrast, the methods of the type displayed in Tableau 13 need only eight stages

for approximations of both orders 5 an 6. Because the latter formula required fewer stages,

15



it appeared to be more efficient at least superficially, and methods of this type have been

adopted as the basis for some general purpose software. However, recent testing [36] as

well as the improvement in selection of particular pairs [23,29] indicates that a more careful

selection process is warranted.

Tableau 13: A Verner (8, 5:6) pair

0 6

1

6

1

6
1

4

15

4

75

16

75
2

2

3

5

6
- 8

3

5

2
2

5

6
- 165

64

55

6
- 425

64

85

96
2

1

15
- 8263

15000

124

75
- 643

680
- 81

250

2484

10625
2

1 3501

1720
- 300

43

297275

52632
- 319

2322

24068

84065

3850

26703
2

1 12

5
-8 4015

612
- 11

36

88

255
0 0 2

b6 3

40
0 875

2244

23

72

264

1955

125

11592

43

616
0 6

b5 13

160
0 2375

5984

5

16

12

85
0 0 3

44
5

Tableau 14: A Hairer (8, 5:6) pair

0 6

1

6

1

6
1

1

4

1

16

3

16
3

4

7

148

343
- 528

343

576

343
3

7

9
- 2849

17496

308

243
- 17024

19683

84721

157464
3

1

6

619

4200
0 24

475
- 147

2600

2187

86450
1

1 6229

22120
- 432

79

17312

7505
- 2107

3160

39366

52535

300

79
3

1 857

4424
- 132

79

102816

40527
- 7595

8216

118098

136591
0 0 3

b6 43

560
- 1

3

2816

7695

16807

84240

19683

69160

1

3

79

1080
0 6

b5 43

560
0 2816

7695

16807

84240

19683

69160
0 0 79

1080
6
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Other eight-stage pairs of orders 5 and 6 exist. A special type [33] based on the design

proposed by Hairer [15] is displayed in Tableau 14. For this pair, a suitable choice for the

DSO is not obvious. There are two stages of stage-order 1 with non-zero weights. Because

these weights sum to zero, this could be accommodated by relaxing the definition of stage-

order. On the other hand, the remaining stages satisfy (7′), but not (7′′) for pi = 3. In

other methods of this design, the choice c2 6= 2c3/3 is available, and in this case, validity

of (7′) for stage 3 only is reduced to p3 = 2. For this type of method, the requirement for

(7′′) to satisfy the order conditions is replaced by the cancellation of certain coefficients.

Hence, in this case, it is convenient to specify the elements of the SOV by the satisfaction

of (7′) only.

For methods of the type displayed in Tableau 12, only eight stages are needed if the

fifth order method is propagated. This design was modified independently by Dormand

et al. [10], Calvo et al. [5], and Verner [35] to allow the propagation of the sixth order

approximation in the initial eight stages such as that of Tableau 15. Recently, the last of

these approaches was extended by Verner and Sharp [39] to yield such pairs of order p ≥ 6

with p arbitrary.

Tableau 15: A FSAL RK(9*, (5)6) pair with DSO=3

0 6

1

9

1

9
1

1

6

1

24

1

8
2

1

4

1

16
0 3

16
3

5

8

5

8
0 − 75

32

75

32
3

2

3

374

1539
0 − 44

57

4880

4617

640

4617
3

7

8
− 30023

14592
0 10353

1216
− 35035

5472
− 70

171

315

256
3

1 70169

18620
0 − 1914

133

38592

3325

1392

665
− 243

100

432

1225
3

b6 53

700
0 0 1264

3375

128

675

81

500

128

875

7

135
6

b5 137

2100
0 0 32

75
− 64

75

27

20
− 64

525
0 2

15
5

Another kind of Runge-Kutta method has been proposed by Owren and Zennaro –

continuous Runge-Kutta methods are designed specifically to provide an approximation
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at all points of an interval, rather than just for a discrete set. These methods have error

estimators inherent in their design. Those authors have found eight-stage methods of

order 5 [21,22].More recently, Santo [26] has shown that at least eleven stages are needed

for continuous methods of order 6. Such methods include explicit Runge-Kutta methods

with appended interpolants of the same order as a special case. A variety of interpolants

of orders p ≤ 6 have appeared in the literature. The techniques used by Verner [37] yield

eleven-stage methods of order 6, and 15-stage methods of order 7, for example. Thus, there

may be as much as a 50% additional cost over conventional pairs to obtain continuous

approximations.

In addition to this construction of a variety of methods, there have been some attempts

to identify explicit connections between different types of pairs. For example, it is known

that each Fehlberg pair can be interpreted as the limit of a sequence of more general pairs

[34]. Verner and Sharp [39] derived a new family of conventional eight-stage pairs of orders

5 and 6 by imposing an additional constraint on the nodes of nine-stage pairs with stage

reuse.
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5. A Classification Scheme

To summarize studies illustrated in preceeding sections, a scheme was developed for

classifying pairs of methods. Through classifying the known pairs by similarities and

differences in their structure, we can better identify the fundamental properties of methods

which lead to their derivation. Better schemes may be possible, for example, by further

study of the interaction of the order conditions.

For a convenient division into classes, there are several major types of error-estimating

formulas:

I. Pairs with identical quadrature rules

II. Pairs with distinct quadrature rules using only internal stages

III. Pairs with reuse of the propagating stage (FSAL)

IV. Continuous methods

Methods of type III are further distinguished according to whether the lower- or higher-

order approximation is reusable – with the latter denoted as type IIIX (to indicate that

extrapolation is implemented).

Further, the dominant stage-order of a pair is used as a secondary classification. The

variety of stage-order vectors for known pairs of design orders 6, 7 and 8 are surveyed in the

following tables. As stated in §3, these pairs usually have DSO = p − 4 or DSO = p − 3.

The pairs included are consistent with the proposed classification scheme. However,

for Hairer’s seventeen-stage method of order 10, with a relaxed definition of stage-order a

convenient value for the DSO = 5 ≡ p− 5, and this would preclude the method from this

classification. A twelve-stage pair of this type has an ASOV=(8,1,2,3,3,4,4,4,3,1,4,4:8,7)

which would suggest DSO = 4 ≡ p− 4, and difficulties with classifying an eight-stage pair

of orders 5 and 6 have already been mentioned. Perhaps with further study an improved

classification scheme may be contrived to resolve this deficiency.
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Table 1: Stage-orders of some formulas of orders 5 and 6

Formula Class Stages ASOV DSO

Fehlberg Ia 8 (6,1,2,2,2,3,2,2:6,5) 2

Hairer Ib 8 (6,1,2,3,3,1,3,3:6,5) 3

Verner IIa1 8 (6,1,2,2,2,2,2,2:6,5) 2

Prince-Dormand IIa2 8 (6,1,2,2,2,2,2,2:6,5) 2

Butcher IIIb 9* (6,1,2,3,3,3,3,3,5:6) 3

Dormand et al.
Calvo et al. IIIXb 9* (6,1,2,3,3,3,3,3,6:5) 3
Verner

Verner IIIXa 9* (6,1,2,2,2,2,2,2,6:5) 2

* For a successful step, one stage is reusable in the next step.

Table 2: Stage-orders of some formulas of orders 6 and 7

Formula Class Stages ASOV DSO

Fehlberg Ia 10 (7,1,2,3,3,3,3,4,3,3:7,6) 3

Verner IIa1 10 (7,1,2,3,3,3,3,3,3,3:7,6) 3

Sharp-Verner IIa2 10 (7,1,2,3,3,3,3,3,3,3:7,6) 3

Verner-Sharp IIb 11 (7,1,2,3,3,4,4,4,4,4,4,4:7,6) 4

Verner-Sharp IIIXb 12* (7,1,2,3,3,4,4,4,4,4,4,4,7:6) 4

* For a successful step, one stage is reusable in the next step.

Table 3: Stage-orders of some formulas of orders 7 and 8

Formula Class Stages ASOV DSO

Fehlberg Ia 13 (8,1,3,3,3,4,4,4,4,4,8,4,4:8,7) 4

Verner IIa1 13 (8,1,2,3,3,4,4,4,4,4,4,4,4:8,7) 4

Prince-Dormand IIa1 13 (8,1,2,3,3,4,4,4,4,4,4,4,4:8,7) 4

Verner-Sharp IIb 14 (8,1,2,3,3,4,4,5,5,5,5,5,5,5;8,7) 5

Verner-Sharp IIIXb 15* (8,1,2,3,3,4,4,5,5,5,5,5,5,5,8:7) 5

* For a successful step, one stage is reusable in the next step.

A ”box-score” of known pairs of each order p ≥ 6 has a number of vacancies still

remaining to be filled. Recent and current research has revealed several families which
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Table 4: Known Runge-Kutta Pairs of orders 5 and 6

Type Subtype: DSO=2 DSO=3

I Fehlberg[14] Hairer[33]

II Verner[32] Verner-Sharp[39]
Prince-Dormand[23]

Verner[38]

III Butcher[4]

IIIX Verner[38] Verner-Sharp[39]

IV Zennaro-Santo[26]

Table 5: Known Runge-Kutta Pairs of orders 6 and 7

Type Subtype: DSO=3 DSO=4

I Fehlberg[14]

II Verner[32] Verner-Sharp[39]
Sharp-Verner[34]

III

IIIX Verner-Sharp[39]

IV

Table 6: Known Runge-Kutta Pairs of orders 7 and 8

Type Subtype: DSO=4 DSO=5

I Fehlberg[14]

II Verner[32] Verner-Sharp[39]
Prince-Dormand[23]

III

IIIX Verner-Sharp[39]

IV

are expected to contain some efficient algorithms [38,39]. For those vacancies which still

remain, there may exist no appropriate pairs. However, each attempt made to construct

pairs of a promising design indicated by this scheme has been successful. Once selected,

each case was resolved by studying known pairs of similar type, and pursuing a formulation
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that had the potential of characterizing a pair of the proposed design. Further, each

successful derivation used the basic formulation outlined in earlier sections.

We conclude this section with an example of a pair of type IIIXa. This family is not

yet completely characterized, but a subset exists for which c3 = 1 and nodes c4, c5, c6 are

constrained by

(14) −171c2
4c

2
5 + 255c4

4c5 − 810c2
5c

4
4 + 12c4

4 − 15c4c
3
5 + 315c2

4c
3
5 + 6c6c

2
5 + 19c2

4c5

−229c3
4c5 − 3c4c6 − 3c5c6 + c2

5 − 9c4c
2
5 − c4c5 + 25c2

4 − 41c3
4 + 750c2

5c
4
4c6

+895c2
5c

3
4 − 525c2

5c
3
4c6 − 120c4

4c6 − 87c2
5c4c6 + 900c4

4c
3
5 − 1110c3

4c
3
5

−225c3
4c5c6 + 270c2

4c
2
5c6 + 198c3

4c6 − 63c2
4c6 + 6c5c

2
4c6 + 48c5c4c6 = 0

which is linear in c6. A particular pair of this type follows.

Tableau 16: A FSAL RK(9*, (5)6) pair with DSO=2

0 6

1

3

1

3
1

1 − 1

2

3

2
2

2

5
− 4

125

66

125
− 12

125
2

2

3
− 22

405

22

45
− 68

1215

70

243
2

163

225

152731

1265625
− 34067

3796875

1543121

34171875

1296991

2187000
− 154687

6075000
2

7

8

6554196313

5848596480
− 6699

2560

7737793

13455360

5493818365

3143172096

58204125

62193664
− 82110459375

92505300992
2

1 7626226

3816645
− 5313

1115

9809

10035

59474065

22269672
− 52227

115960

9632823750

9348199471
− 18538496

40187945
2

b 1457

13692
0 0 19625

22192
− 4023

1040

48694921875

10396203896
− 598016

540645

223

744
6

b5 524399

4577040
0 − 3751

52650

34794925

46736352
− 261577

135200

4873921875

2179849204
− 11736064

45182475
0 111

650
5
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6. Conclusions

A variety of formula pairs have been examined with a view to identifying common

features of their structure. It might be expected that such study will lead to an improved

understanding of such methods, and probably to new methods and new kinds of methods

should they exist.

A scheme is proposed to classify types of formula pairs according to similarities among

and differences between their structures. While the proposed scheme is not completely

consistent, it may be expected to facilitate the analysis of properties of different classes of

methods.

The analysis has a broader application. New classes of hybrid and general linear

methods continue to appear in the literature. In such methods, the lowest stage-order

is often greater than 1, but perhaps less than the corresponding dominant stage-order.

Hence, a classification scheme of the proposed type will be different, but may facilitate the

derivation of new formulas.
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