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Abstract. This paper surveys and updates results and open problems related to the variety

defined by the High School Identities as well as the variety generated by the positive numbers

with exponentiation.

The set of eleven basic identities of the positive integers N with the operations
+,×, ↑ which one learns in high school are as follows (the subset not involving

exponentiation is called ĤSI):

HSI





ĤSI





(1) x + y ≈ y + x

(2) x + (y + z) ≈ (x + y) + z

(3) x · 1 ≈ x

(4) x · y ≈ y · x
(5) x · (y · z) ≈ (x · y) · z
(6) x · (y + z) ≈ (x · y) + (x · z)

(7) 1x ≈ 1

(8) x1 ≈ x

(9) xy+z ≈ xy · xz

(10) (x · y)z ≈ xz · yz

(11) (xy)z ≈ xy·z.

These can be found in Dedekind’s 1888 monograph [8] Was Sind Und Was Sollen
Die Zahlen?—they are derived from the natural numbers with the successor oper-
ation. They are among the oldest and most familiar of the equational theories in
mathematics.

Our first (and perhaps most important) models of these two sets of identities are

N = (N,+,×, ↑, 1) N̂ = (N,+,×, 1)

Obvious questions to ask about the identities of these two well known algebras
concern:

• Axioms for their equational theories, and the
• Decidability of their equational theories.
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It has long been known that

(a) ĤSI is a finite set of axioms for the equational theory of N̂, and

(b) the equational consequences of ĤSI, that is, the equations true of N̂, are
decidable.

One sees this by noting that every N̂ term t(~x), that is, a term in the language

{+,×, 1} of N̂, has a normal form, namely a polynomial p(~x). There is a straight
forward effective procedure to find this normal form, namely by multiplying out and
collecting terms. By classical algebra it is clear that an equation s(~x) ≈ t(~x) follows

from ĤSI iff both sides have the same polynomial as their normal form. This is all

one needs to prove that ĤSI is a basis for the equational theory of N̂ and that this
equational theory is decidable.

However when we turn to study HSI and N we no longer have the benefit of
such normal forms, the situation becomes immensely more complicated, and there
are many open questions.

1. Models of HSI

When looking for natural models of ĤSI one not only has the algebra N̂ but also
the familiar number systems yield models: the integers, the rationals, the reals, and
the complex numbers; and one can take the nonegative [positive] integers, rationals,
or reals.

However when we turn to find natural models of HSI many of these possibilities
evaporate, e.g., the positive rationals are not closed under ↑. One of the most
fascinating that survives (see §2) is the positive reals R+ = (R+,+,×, ↑, 1).

Another natural model was found by G. Birkhoff [3] (1942)—he showed that HSI
holds for the algebra of posets1 where the operations are given by:

+ is disjoint union
× is cartesian product
↑ is order preserving maps

Consequently they also hold for the algebra of cardinal numbers. Aside from
some examples in topos theory2 we know of few other natural models of HSI that
have been studied.

1.1. The Smallest Submodels. This and the next subsection draw heavily on
the papers [4] (1992) and [5] (1993) of Burris and Lee.

Every model of HSI has a smallest submodel, namely the subalgebra generated
by the constant 1. The elements of this submodel are just 1,2,3, etc., where

2 := 1+1
3 := 2+1

etc.

1In a footnote Birkhoff says that Tukey pointed out that HSI holds more generally for pre-

orders (= reflexive + transitive).
2D. Higgs examined several topoi in the hopes of finding a natural countermodel to Wilkie’s

identity (see Section 5).
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since these elements include 1 and are closed under addition, multiplication and
exponentiation. We call these elements the integers of the model.

If the set of integers of a model of HSI is infinite then it is a copy of N, the free

HSI algebra freely generated by Ø. On the other hand if the set of integers is finite
then it must give a submodel that looks like Fig. 1, the quotient of N defined by

a+k-1

a+1

a

2

1

Figure 1. A finite quotient Na,k of N

a ≈ a + k.
Not every positive a and k gives a quotient of N as pictured in Fig. 1—each pic-

ture does support addition and multiplication, but not necessarily exponentiation.

It is routine to show that the congruences of N̂ are the relations ≡a,k defined by
(i, j) ∈≡a,k iff i = j, or i, j ≥ a and i ≡ j mod k. We want to know the a, k for
which ≡a,k is a congruence of N, that is, when is ≡a,k compatible with exponentia-
tion. This is equivalent to the condition xa ≡a,k xa+k holds for x ∈ N , which leads
to the fascinating divisibility conditions in the following theorem (for a complete
proof see [4]).

Theorem 1.1. The finite quotients of N are the Na,k where a, k ∈ N satisfy (for
all primes p):

pe|k ⇒ e ≤ a

p|k ⇒ (p− 1)|k.

The next corollary gives a complete list of the five “circle” integer HSI-algebras,
i.e., those with a = 1, and hence no “tail”. These give the examples of rings Z/(k)
that support exponentiation (with 00 = 0).

Corollary 1.2. N1,k is a quotient of N iff k ∈ {1, 2, 6, 42, 1806}.
Already in the most elementary study of the quotients of N, the Na,k, we run

into an interesting question in the theory of numbers. Given a ∈ N define the
sequence of primes Σa = (p1, p2, · · · ) by

• p1 = 2;
• given p1, . . . , pi, let pi+1 be the smallest prime p which is greater than pi

and such that (p − 1)|(p1 · · · pi)
a, assuming such a p exists. If no such p

exists then Σa terminates with pi.
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Proposition 1.3. Given a positive integer a, there are infinitely many Na,k iff the
sequence of primes Σa is infinite.

Note that Σ1 = (2, 3, 7, 43), a finite sequence.

Problem 1. Is Σa finite for all (any) a > 1?

About 20% of the primes below 10,000,000 are in

Σ2 = (2, 3, 5, 7, 11, 13, 19, 23, . . . , 9999749, 9999973, . . . ).

So even if Σ2 is finite, a computer enumeration does not look feasible.

Conjecture 1. Σa is infinite for a > 1, with asymptotic density zero in the set of
primes.

To show the first part of the conjecture holds it suffices to show Σ2 is infinite as
Σa ( Σa+1.

1.2. The Five Two-Element Models of HSI. It is a routine exercise to verify
that there are exactly five two-element models of HSI, and they are:

(1)
+ 1 a
1 1 1
a 1 a

× 1 a
1 1 a
a a a

↑ 1 a
1 1 1
a a 1

(2)
+ 1 a
1 1 1
a 1 a

× 1 a
1 1 a
a a a

↑ 1 a
1 1 1
a a a

(3)
+ 1 a
1 1 a
a a a

× 1 a
1 1 a
a a a

↑ 1 a
1 1 1
a a a

(4)
+ 1 2
1 2 2
2 2 2

× 1 2
1 1 2
2 2 2

↑ 1 2
1 1 1
2 2 2

N2,1

(5)
+ 1 2
1 2 1
2 1 2

× 1 2
1 1 2
2 2 2

↑ 1 2
1 1 1
2 2 2

N1,2

Clearly algebras (4) and (5) satisfy all the identities of N as they are quotients
of N. It is astonishing that we did not know until the recent proof of Asatryan [2]
that all five of the two-element algebras satisfy all of the identities of N, answering
a question posed more than a decade ago in [4].

By taking the variety generated by each of these two-element models of HSI
we easily have many other recognizable models of HSI. In four of the cases below
exponentiation is the first projection function π (defined by π(a, b) = a).

• Let H = 〈H,∨,∧,→, 0, 1〉 be a Heyting algebra.
Then H? = 〈H,∨,∧,←, 1〉 is an HSI-algebra, where a← b is defined to

be b→ a.
• Let D = 〈D,∨,∧, 1〉 be a distributive lattice with 1.

Then 〈D,∨,∧, π, 1〉 is an HSI-algebra.
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• Let S = 〈S,∧, 1〉 be a semilattice with 1.
Then 〈S,∧,∧, π, 1〉 is an HSI-algebra.

• Let S = 〈S,∧, 0, 1〉 be a semilattice with 0,1.
Then 〈S, f,∧, π, 1〉 is an HSI-algebra, where f is the binary constant map

whose value is always 0.
• Let R = 〈R,+,×, 0, 1〉 be a Boolean ring.

Then 〈R,+,×, π, 1〉 is an HSI-algebra.

2. G.H. Hardy’s “Orders of Infinity”

One of the most important tools for studying the identities of N has been
G.H. Hardy’s monograph [15] (1921) on the partial functions defined by the terms
of the partial algebra on the reals R that we call RH :

RH =
(
R, +, −, ×, ÷, ( n

√
)n∈N , exp, log, (r)r∈R

)
.

Let H be the set of partial functions defined by RH terms t(x), and let H∞ be
the set of f ∈ H such that f is eventually defined on the reals, that is, defined
for sufficiently large values of x. (He called H∞ the set of logarithmico-exponential
functions.) Hardy considered the following relation ≺ between functions that are
eventually defined on the reals:

f ≺ g means f is eventually less than g,

and proved the following fundamental result.

Theorem 2.1 (Hardy [15], Theorem 13). Given f, g ∈ H∞ either f ≺ g or g ≺ f
or f is eventually equal to g.

Thus two distinct H∞-functions cannot weave back and forth infinitely often,
that is, we cannot have the situation suggested by Fig. 2. Note that this almost

Figure 2. Two functions repeatedly intersecting

says ≺ defines a linear order on H. However two partial functions from H∞ that
eventually agree need not agree everywhere they are defined.
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To prove the ordering result Hardy introduced the following concepts:

(1) The order of an RH term is the maximal number of nested exponentials
and logs in it.

(2) An integral RH term of order at most n is one of the form
∑

i

αi(x) · eβi(x) ·
∏

j

log γij(x)

where the αi(x), βi(x) and γij(x) are of order at most n− 1.

Usual induction over formulas does not seem to yield Theorem 2.1. Instead
Hardy uses multi-stage induction to show:

an H∞-function with arbitrarily large roots is eventually zero.

He uses the fact:

every H∞-function of order at most n is an algebraic expression in integral
functions of order at most n.

One of his most important ways of reducing a case to the induction hypothesis is
to differentiate, noting that Rolle’s Theorem guarantees:

f(x) has arbitrarily large roots implies f ′(x) has arbitrarily large roots (see
Fig. 3).

Figure 3. The derivative of f has a root between two roots of f

Corollary 2.2. If f, g ∈ H∞ are both defined on (a,∞) but do not define the same
function on (a,∞) then either f ≺ g or g ≺ f .

Proof. This follows from the fact that f and g each have power series expansions
in some neighborhood of any b ∈ (a,∞), so if they are eventually equal then they
are equal on (a,∞). ¤

To connect Hardy’s work with R+ we first define a translation of terms:

given any term t(~x) in the language of R+ let t∗(~x) be the term obtained
by replacing subterms of the form uv in t by exp(v log u).

Then we observe that

for t a term in the language of R+ each t∗ gives a partial function of
RH that is defined whenever all arguments are positive reals, and for such
arguments it agrees with the term function of R+ defined by t.
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As an immediate corollary we see that the term functions f, g of R+ as well as
of N satisfy the hypothesis of Corollary 2.2, so ≺ defines a linear order on each
of these sets. The set of term functions of N is called Sk (for the set of Skolem

functions). We know more about the ordering on the term functions of N.

Theorem 2.3 (Ehrenfeucht [9] (1973)). The set Sk is well-ordered by ≺.

The exact order type of Sk under ≺ is not known.

Conjecture 2. (See [13], p. 8) ε0 is the order type of (Sk,≺).

Using Corollary 2.2 we have the following result.

Theorem 2.4 (Macintyre [18] (1981)). V (N) = V (R+).

Proof. As N is a subalgebra of R+ it suffices to show that each identity of N is
also an identity of R+.

First consider a one variable identity s(x) ≈ t(x). If this fails in R+ then the
term functions that s(x) and t(x) define on R+ are eventually distinct. Hence they
eventually disagree on the integers. So the identity also fails in N.

Now a simple induction on the number of variables shows that every identity of
N is an identity of R+. ¤

Thus in studying the identities of N it is natural to consider switching to the
identities of R+ and make use of the tools of analysis.

3. Decidability

Hardy’s investigations of the asymptotic behaviour of H∞-functions provided
the starting point for investigations into the decidability of the equational theory of
N. D. Richardson [23] (1969) built on Hardy’s work to show that the one variable
equational theory of N is decidable, that is, one can decide which identities s(x) ≈
t(x) hold in the natural numbers. Richardson’s method was to study the validity of
equations in RH . However, before one can even talk about decidability of equations
it is necessary to to have a countable language, to eliminate the continuum many
real constants available in Hardy’s formulation. If we replace the constants (r)r∈R

in the model RH by just the two constants 0, 1 then the language is countable,
and furthermore any partial function in Hardy’s set H is defined by a term in
the reduced language with the help of real parameters, i.e., it is defined by an
expression t(x,~r) where t(x, ~y) is a term using only the two constants 0 and 1, and
~r is a sequence of reals.

Richardson modified Hardy’s language a bit further, dropping the radicals and
changing the log function to the log of the absolute value. So Richardson was
working with the structure

R̃H =
(
R, +, −, ×, ÷, exp, log | |, 0, 1

)
.

Let H̃ be the set of partial functions defined by the R̃H terms t(x,~r) with real

parameters r, and let H̃∞ be the set of f ∈ H̃ for which f is eventually defined.
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It is easy to see that H̃ ⊆ H, so Hardy’s Theorem holds for H̃∞. Furthermore

any partial function in H which can be defined without using radicals is also in H̃.
In particular, all the term functions of R+ appear as restrictions (to the positive

reals) of members of H̃∞.
Now that we have a countable language it is possible to formulate a number of

open questions concerning decision problems. In the following we write s ≺ t for
terms s and t if the corresponding partial functions are in the relation ≺.

Problem 2 (Eventually Defined). Can one decide if a one variable R̃H term t(x)
is eventually defined?

Problem 3 (Root Size). Given that an R̃H term t(x) is eventually defined and
eventually nonzero, can one give an effective bound on (the size of) the roots of
t(x)?

A special case of this is formulated for N.

Problem 4 (Intersection Size). Given that two N terms s(x) and t(x) do not
define the same function on N (this is decidable—see Theorem 3.3), can one give
an effective bound on the size of the n for which s and t agree?

Problem 5 (Dominance for H̃). Given t(x), an R̃H term that is eventually defined,
can one decide if 0 ≺ t(x)?

A special case of the Dominance problem is formulated for N.

Problem 6 (Dominance for Sk). Is there a decision procedure for s(x) ≺ t(x),
where s(x), t(x) are terms in the language of N?

Richardson showed that if a decision procedure for Problem 6 exists then one can
decide equality for the so-called exponential constants, that is, for the variable
free terms in the language +,×,÷, ↑, 1.

Gurevic̆ [14] (1986) showed that if one considers only s(x), t(x) ≺ 2x2

then
Problem 6 is decidable.

3.1. Richardson’s Proof. Note that if t(x, ~y) is an R̃H term and ~b ∈ R are such

that t(x,~b) is defined on an interval I, then t(x,~b) defines a function in C∞(I).

Richardson’s main idea was to associate with each R̃H term t a finite sequence of

R̃H terms

t0, . . . , tk

which give important information about the number of distinct zeros of t(x,~b) in
any interval of definition.

Let us say that a term t(x, ~y) has the property R(x, k) if there is a sequence of

R̃H terms

t0(x, ~y), . . . , tk(x, ~y)

such that

(1) t0(x, ~y) = t(x, ~y) and
∂

∂x
tk(x, ~y) = 0
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(2) For every interval I ⊆ R and every tuple ~b ∈ Rn, if t(x,~b) is defined on I

then, for each a ∈ I and each i < k, ti+1(a,~b) is defined and

ti+1(a,~b) = 0 ⇔ ∂

∂x
ti(a,~b) = 0.

The simplest example is when t(x) is a polynomial.

Example 3.1. Let t(x) be a polynomial of degree k. Then

t(x), t′(x), . . . , t(k)

is a sequence that shows t(x) has R(x, k).

In this case the length of the sequence is just the degree of the polynomial.
However the sequences quickly become more complicated:

Example 3.2. If p(x) is a polynomial of degree k and q(x) is a polynomial of
degree `, then for t(x) = exp(p(x)/q(x))− 1 let r(x) = p(x)q′(x)− q(x)p′(x). The
sequence

ep(x)/q(x) − 1, r(x), r′(x), . . . , r(k+`−1)(x)

shows that t(x) has the property R(x, k + `− 1).

Suppose that t(x, ~y) is an R̃H term that has property R(x, k). It is easy to show

that for any interval I and any tuple ~b, if t(x,~b) is defined in I then

either t(x,~b) = 0 on I, or t(x,~b) has at most k distinct roots in I.

Richardson’s main result is that for each R̃H term t(~x) and each variable xi from
~x

there is an effective procedure to find a nonnegative integer k such
that t(~x) has property R(xi, k).

It is amazing that one is able to effectively bound the number of roots of t(x,~b) on
any interval I for which it is defined but not identically 0, but we do not know how
to effectively bound the size of the roots in the interval I. (See Problems 3 and 4.)

From Richardson’s result one immediately has:

Theorem 3.3 (Richardson [23] (1969)). The one variable identities s(x) ≈ t(x) of
N are decidable.

3.2. Macintyre’s Proof. Macintyre, initially unaware of Richardson’s work, tack-
led the decidability of the identities of N by refining Hardy’s work, but using the

language of R̃H . At each step of Hardy’s induction proof in which t(x,~b) is not
identically 0 on an interval I, Macintyre effectively computed an upper bound on

the number of roots of t(x,~b) in I. This allows him to prove the decidability of one
variable equations, and then a simple inductive argument gives:

Theorem 3.4 (Macintrye, [18] (1981)). The identities s(~x) ≈ t(~x) of N are decid-
able.

We note that Macintyre’s proof of the one variable case requires an excursion
into the complex plane, something that the other two published proofs do not.
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3.3. Gurevic̆’s Proof. Another proof of the decidability of the equational theory
of N was given by Gurevic̆ [11] (1985) using ideas of A. G. Khovanskii. This proof
has a resemblance to that of Richardson, with the emphasis on building a chain of
terms t0, . . . , tk linked in some fashion by differentiation. In Gurevic̆’s paper the ti

must satisfy

t0 = T, tk ∈ Q,
∂tj
∂x

=
βjtj + tj+1

αj

By solving these linear differential equations one sees that the number of roots in
I can drop by at most one when passing from tj to tj+1, in any given interval of

definition I of t0 in which tj(x,~b) is not identically 0,
In the same paper Gurevic̆ examines the equational consequences of any finite

set Σ of identities true of N that contains the identities

1x ≈ 1, x1 ≈ 1 · x ≈ x · 1 ≈ x. (3.1)

He gives a decision procedure that takes as input any such Σ and identity s ≈ t
and determines if Σ ` s ≈ t. The method is to describe a congruence of the term
algebra generated by the finitely many variables of Σ, s and t, that yields a finite
quotient whose size is effectively bounded and in which s ≈ t will fail if it is not a
consequence of Σ. Thus

Theorem 3.5 (Gurevic̆ [11] (1985)). If Σ is a finite set of identities including
(3.1) and true of N then the equational consequences of Σ form a decidable set of
identities.

Corollary 3.6 (Gurevic̆ [11] (1985)). The equational consequences of HSI are de-
cidable.

4. The Study of Rexp

Our understanding of the first-order theory of

Rexp = (R,+,−,×, exp, 0, 1, <)

has made great strides in the last two decades. The interest in this structure was
motivated by the famous result of Tarski that showed the ordered field

R = (R,+,×,−, 0, 1, <)

has a decidable first-order theory, a result proved by the method of elimination of
quantifiers. There are three results that we want to mention here:3

• Rexp is O-minimal.
• Rexp has a model-complete theory.
• If Schanuel’s conjecture holds then Rexp has a decidable first-order theory.

3We are indebted to Charles Steinhorn for an enlightening conversation on the importance of

these results.
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To see that the study of the first-order theory of Rexp impacts our understanding
of N we only need to note that y ≈ log x is first-order definable by x ≈ exp y. Thus
one can define z ≈ x ↑ y for positive x, y by

(0 < x)&(0 < y)&∃u
(
(x ≈ expu)&z ≈ exp(yu)

)
.

Then one can see that all term functions of R+ are first-order definable in Rexp.

4.1. O-minimal. An ordered structure A is said to be O-minimal if every set
defined by a first-order formula φ(x,~a) with parameters ~a from A is just a union of
finitely many open intervals and finitely many points. In particular this says that
a definable subset is either bounded above or contains an interval (a,∞).

Tarski’s elimination of quantifiers for R easily yields the result that R is O-
minimal—after all, a quantifier free formula in a single variable with parameters ~a
is (effectively equivalent to) a Boolean combination of atomic formulas of the form
p(x,~a) ≈ 0, where p is a polynomial.

However we do not have elimination of quantifiers for Rexp. According to [28],
Charbonnel presented an incomplete proof of the O-minimality of Rexp in 1991—
the gaps were filled by Wilkie.

Hardy’s Theorem from Section 2 is an easy corollary of O-minimality of Rexp

since any two RH terms s(x) and t(x) can be expressed by first-order formulas of
Rexp with real parameters, and thus the set of points where s(x) is less than t(x)
is definable by a first-order formula of Rexp with real parameters.

By O-minimality one also sees that the set of points where a term of RH , or a

term of R̃H , is undefined is a union of finitely many open sets and finitely many
points.

4.2. Model Completeness. A first-order theory is model complete if every sub-
model of a model of the theory is an elementary submodel. Although not obvious,
this is equivalent to requiring that every first-order formula be equivalent to an exis-
tential formula. Hence one can view model completeness as a step toward quantifier
elimination. Wilkie [29] (1996) proved that the first-order theory of Rexp is model
complete. This does not have an immediate bearing on our study of HSI, but it led
to the next topic.

4.3. Decidability and Schanuel’s Conjecture. Schanuel’s conjecture says that
if z1, . . . , zn are linearly independent complex numbers over the field Q of rationals
then the field extension Q

(
z1, . . . , zn, ez1 , . . . , ezn

)
has transcendence degree over

Q at least n. (This conjecture is widely believed to be correct.) The Schanuel
Conjecture for the Reals means his conjecture with z1, . . . , zn restricted to the
reals.

Theorem 4.1 (Macintyre and Wilkie [19] (1996)). If Schanuel’s Conjecture for
the Reals holds then the first-order theory of Rexp is decidable.

Since the term functions of R+ are definable by first-order formulas of Rexp, it
follows that the problems posed at the beginning of Section 3 have positive answers
if Schanuel’s conjecture holds.
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Corollary 4.2. If Schanuel’s Conjecture [for the reals] holds then the Eventually
Defined Problem and the Dominance Problem are decidable, and one effectively has
a bound on the Root Size for t(x) for any interval I in which t(x) is defined but not
identically zero.

5. Exotic identities of N

By the 1960s there was an interest in determining if HSI actually axiomatizes
the equational theory of N. Although the identities were known to be decidable,
this did not give a way to determine if there are any exotic identities of N, that is,
identities not following from HSI.

5.1. The Wilkie Identity. In 1981 Wilkie circulated a manuscript4 [27] showing
that the identity

(
(1 + x)y + (1 + x + x2)y

)x ·
(
(1 + x3)x + (1 + x2 + x4)x

)y

≈
(
(1 + x)x + (1 + x + x2)x

)y ·
(
(1 + x3)y + (1 + x2 + x4)y

)x
,

which we call W (x, y), is indeed an exotic identity of N.
Wilkie’s proof was purely syntactic, using an induction on the length of a sup-

posed derivation of W (x, y) from HSI. This proof was soon augmented by a model
theoretic proof of Gurevic̆ [11] (1985). Using the subterms of W (x, y), and a little
tweaking, Gurevic̆ constructed a 59-element algebra satisfying HSI but not W (x, y).
In Gurevic̆ [12] (1990) we find the following remark (p. 33):

C.W. Henson once asked if there are countermodels to Tarski’s ques-
tion (whether all valid identities in signature (+, ·, ↑) were derivable)
of a very small size, say, 5. Currently I don’t know; my own record
was 33 elements and I heard a rumour that someone had pushed the
record further to 28 elements.

Since then there has been considerable progress in the search for a smallest coun-
terexample to W (x, y). The second column gives the size of a counterexample that
has been found, the third column a lower bound on the size of any counterexample.

R. Gurevic̆ 59 elements [11] (1985)
...

R. Gurevic̆ 33 elements (≤ 1990)

S. Burris 28 elements (1988)
...

S. Burris 16 elements (1990)
S. Lee 15 elements (1991)

S. Burris
S. Lee

o

15 elements ≥ 7 elements [4] (1992)

4This manuscript was not put in final form and published until 2002.
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M. Jackson 14 elements ≥ 8 elements [17] (1996)

S. Burris
K. Yeats

o

13 elements (2001)

S. Burris
K. Yeats

o

12 elements Fig. 4 (2001)

Conjecture 3. The 12 element algebra in Fig. 4 is a smallest counterexample to
Wilkie’s identity.

5.2. How We Found the 12-Element Example. The method used first a
lengthy search for possible cores of such an example. If W (x, y) fails in a model of

HSI at (a, b) then we call the ĤSI-subalgebra generated by {a} a core of the model.
Burris and Lee [4] (1992) state a number of conditions that cores must satisfy, for
example, there must be at least three integers.

So first we searched for possible cores. Then we tried to expand the core candi-
dates to models of HSI that failed W (x, y). Again we had some conditions that b
must satisfy if W (a, b) is to fail, for example b cannot be in the core generated by
a (Jackson [17] (1996)). C-programs were written and a few months of computing
needed . . .

5.3. The Search for Natural Counterexamples to Wilkie’s Identity. The
counterexamples to Wilkie that we know are quite intricate and certainly not easy to
remember. One can hope for a natural counterexample along the lines of Birkhoff’s
algebra of posets. The natural HSI-algebras that we have constructed from re-
lational structures or topologies share features of Birkhoff’s algebra that lead to
W (x, y) being satisfied, namely:

(a) elements of the algebra are structures that decompose into sums of compo-
nents,

(b) exponentiation is given by certain maps, and such decompose into maps on
the components, and

(c) product is given by Cartesian product.

Problem 7. Is there is natural counterexample to W (x, y)?

Fiore, Di Cosmo and Balat [10] have answered Problem 7 in the negative within
the context of cartesian closed categories with finite coproducts.5

Problem 8. Is there a natural HSI-algebra that is not in V (N)? In particular, is
the algebra of [finite] posets in V (N)?

Problem 9. Is there an algebra with fewer than 12 elements that satisfies HSI but
is not in the variety generated by N?

5We are indebted to Sergei Soloviev for bringing this developement to our attention.
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+ 1 2 3 4 a b c d e f g h

1 2 3 4 4 2 3 d 3 3 3 3 4

2 3 4 4 4 3 4 3 4 4 4 4 4

3 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4

a 2 3 4 4 b 4 b 3 h 3 3 4

b 3 4 4 4 4 4 4 4 4 4 4 4

c d 3 4 4 b 4 b 3 3 3 3 4

d 3 4 4 4 3 4 3 4 4 4 4 4

e 3 4 4 4 h 4 3 4 4 3 h 4

f 3 4 4 4 3 4 3 4 3 4 3 4

g 3 4 4 4 3 4 3 4 h 3 4 4

h 4 4 4 4 4 4 4 4 4 4 4 4

× 1 2 3 4 a b c d e f g h

1 1 2 3 4 a b c d e f g h

2 2 4 4 4 b 4 b 4 4 4 4 4

3 3 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4

a a b 4 4 c b c b h 4 4 4

b b 4 4 4 b 4 b 4 4 4 4 4

c c b 4 4 c b c b 4 4 4 4

d d 4 4 4 b 4 b 4 4 4 4 4

e e 4 4 4 h 4 4 4 4 4 h 4

f f 4 4 4 4 4 4 4 4 4 4 4

g g 4 4 4 4 4 4 4 h 4 4 4

h h 4 4 4 4 4 4 4 4 4 4 4

↑ 1 2 3 4 a b c d e f g h

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 4 4 4 4 4 4 4 f 4 4 4

3 3 4 4 4 e 4 4 4 g 4 e h

4 4 4 4 4 4 4 4 4 4 4 4 4

a a c c c c c c c c c c c

b b 4 4 4 4 4 4 4 4 4 4 4

c c c c c c c c c c c c c

d d 4 4 4 f 4 4 4 4 4 4 4

e e 4 4 4 4 4 4 4 h 4 4 4

f f 4 4 4 4 4 4 4 4 4 4 4

g g 4 4 4 h 4 4 4 4 4 h 4

h h 4 4 4 4 4 4 4 4 4 4 4

Figure 4. A Twelve-Element Counterexample to Wilkie’s Identity

5.4. The Smallest Exotic Identity. If s(x) ≈ t(x) is a one-variable equation
that holds in N then both sides of the equation define the same Skolem function
on N . Thus given two such identities si(x) ≈ ti(x), i = 1, 2, we say that the first
identity is smaller than the second identity if s1(x) ≺ s2(x) holds. Ehrenfeucht’s
Theorem says that the set of Skolem functions of N are well-ordered by ≺, so one
can ask:
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Problem 10. What is the smallest one variable exotic identity?

Conjecture 4 (Gurevic̆ [12] (1990), p. 29). The smallest exotic identity is

(P x + Qx)2
x · (R2x

+ S2x

)x = (P 2x

+ Q2x

)x · (Rx + Sx)2
x

where

P = 1 + x

Q = 2 + x

R = 2 + x + x3

S = 4 + x2 + x3.

5.5. The Search for Non-Exotic Identities. Considerable effort has been ex-
pended to find nice sets S of terms such that any equation true of N that has
both sides from S will be a consequence of HSI. C.W. Henson and L.A. Rubel used
Nevanlinna theory in [16] (1984) to show that S can be the set of terms that only
use exponentiation of variables or constants. Gurevic̆ [13] (1993) extended this
work by showing that one can allow exponentiation of polynomials.

6. The Equational Theory of N is not Finitely Axiomatizable

Gurevic̆ [12] (1990) showed that there is no finite set of identities that axiomatize
the identities of N. Indeed the following collection of Wilkie style identities in one
variable x are true of N but cannot all be derived from any finite subset of the
identities true of N (n is odd in the following):

(P x + Qx
n)2

x · (R2x

n + S2x

n )x = (P 2x

+ Q2x

n )x · (Rx
n + Sx

n)2
x

where

P = 1 + x

Qn = 1 + x + · · ·+ xn−1

Rn = 1 + xn

Sn = 1 + x2 + · · ·+ x2n−2.

Although much of his proof of the non-finitely axiomatizable result is an elemen-
tary study of the forms in which terms and equational proofs can be expressed, at
one point he needs to go into the complex plane and examine analytic continuations
of complex functions around singularities.
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