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1 Monic and Epic

A morphism f : A→ B is monic if for any g 6= h : C → A then fg 6= fh.
A morphism f : A→ B is epic if for any g 6= h : B → C then gf 6= hf .
Also in any category coming from universal algebra, a 1− 1 homomorphism
must be monic and an onto homomorphism must be epic.

Property 1. In Set, Grp, R − mod the converse holds, i.e all monics are
1− 1, all epics are onto.

Proof. Set: Take f : A → B monic and take a, b ∈ A with f(a) = f(b).
Suppose a 6= b, take C any nonempty set, define g : C → A, g(x) = a,∀x ∈ C
and h : C → A, h(x) = b,∀x ∈ C. Since C is nonempty we have g 6= h but
fg = fh, a contradiction.

Take f : A→ B epic, suppose there is b ∈ B not in the image of f . Choose
C to have at least two elements c, c

′
define g : B → C, g(x) = c,∀x ∈ B,

h : B → C, h(x) = c,∀x 6= b, x ∈ B and h(b) = c
′
. Then g 6= h but gf = hf ,

a contradiction.

Grp: Take f : A → B monic, take g, h : Kerf → A with h the canon-
ical embedding and g the zero map. Then fg = 0 = fh implies g = h, so
Kerf = 0.
Note the same argument works in R−mod.

Take f : A→ B epic if f(A) = B done so assume not. Let C be the group
of permutations of the left coset of f(A) in B. g : B → C, g(x) = id, ∀x ∈ B.
h : B → C, g(x) = mapx : bf(A) 7→ bx−1f(A). Then gf = id = hf so g = h
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which implies f(A) = B.

R − mod: Suppose f : A → B epic, define g, h : B → B/f(A) with g
the zero map and h the quotient map. Then gf = 0 = hf infers g = h, so
f(A) = B.

Property 2. In Ring every monic is 1− 1 but not every epic is onto.

Proof. take f : A → B monic, P = {(a, b) ∈ A × A : f(a) = f(b)}. Define
g, h : P → A with g the projection onto the first coordinate and h the pro-
jection onto the second coordinate. Then fg = fh so g = h. The only way
this occurs is P ∼= A.

Consider the natural map τ : Z→ Q. τ is monic since it is 1− 1 but it is
also epic as if g, h : Q→ R then g, h are determined by where they send 1 to.
So g 6= h implies g(1) 6= h(1) thus gτ(1) 6= hτ(1) so epic but not onto.

2 Initial and terminal objects

Definition. An object A in a category C is an initial object (sometimes
“universal repelling”) provided that for all B ∈ Obj(C) there is a unique
morphism A→ B.

Example. Set: ∅ is an initial object.

Grp: 1 is an initial object.

Ring: Z is an initial object.

Property 3. Initial objects are unique up to unique isomorphism if they
exist.

Proof. Say A,A
′

are both initial objects, so there’s a unique morphism f :
A → A

′
and a unique morphism g : A

′ → A. Consider fg : A
′ → A

′
and

gf : A → A but there is a unique morphism A
′ → A

′
so it must be the

identity. Thus fg = 1A′ and gf = 1A.

Definition. An object A in a category C is a terminal object (or universal
attracting) provided that ∀B ∈ Obj(C) there exists a unique morphism B →
A.

Example. Set: any singleton set is a terminal object.

Grp: 1 is a terminal object.
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Property 4. Terminal objects are unique up to unique morphism if they
exist.

Proof is the same.

Definition. An object which is both an intial and a terminal object is called
a zero object.

3 Products and Coproducts

Definition. Let {Ai}i∈I be a family of objects of C. The coproduct of the
Ai is an object of C

∐
i∈I
Ai along with morphisms νi : Ai →

∐
i∈I
Ai such that

∀X ∈ Obj(C) and every family of morphism αi : Ai → X there exists a
unique Θ :

∐
i∈I
Ai → X such that ∀i,

Ai
νi //

αi

��

∐
i∈I
Ai

Θ
}}

(∗)

X

commutes.

Example. Set : coproduct is disjoint union.

R−mod: coproduct is direct sum
⊕

Mi.

Definition. Let {Ai}i∈I be a family of objects of C. The product of the
Ai is an object of C

∏
i∈I
Ai together with morphisms πi :

∏
i∈I
Ai → Ai such

that ∀X ∈ Obj(C) and all morphism βi : X → Ai there exists a unique
Θ : X →

∏
i∈I
Ai such that ∀i,

Ai
∏
i∈I
Ai

πioo (∗∗)

X

Θ

==
βi

OO

commutes.

Example. In every category coming from universal algebra, the product is
the cartesian product.
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Property 5. Products and coproducts are unique if they exist.

Proof. Build the category where objects are pairs of an element of C and
a family of morphisms from the Ai (coproduct case) or to the Ai (product
case). The morphism of the category are morphisms of the first elements of
the pair such that (*) commutes (coproduct case) or (**) commutes (product
case). Then the definition of coproduct says that the coproduct is initial in
this category and the definition of product says that the product is terminal
in its category. So they are each unique.

A reference is “Joy of Cats”

4 Kernels

Definition. A category has zero morphisms if every Hom(A,B) has a mor-
phism 0AB s.t ∀X, Y, Z ∈ Obj(C) and ∀f : Y → Z, g : X → Y ,

X
0XY //

g
��

0XZ

  

Y

f
��

Y
0Y Z

// Z

commutes.

Definition. In a category with zero morphisms (pointed category) let f :
X → Y be a morphism then a kernel of f is a morphism k : K → X s.t

X
f

  
K

k

>>

0KY

// Y

and given any k
′
: K

′ → X s.t the analogue triangle holds and there exists a
unique v : K

′ → K
X

f

��
K

′

k
′

>>

v //

0
K

′
Y

33K

k

OO

0KY // Y

Here kernel of f is defined by a universal property so by the same type
of argument as for products and coproducts it is unique if it exists. So write
k = kerf .
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Property 6. kerf is monic.

Proof. Take g 6= h : C → K say (kerf)g = (kerf)h then

X
f

��
K

′

(kerf)g=(kerf)h
>>

v //

0
K

′
Y

33K

k

OO

0KY // Y

here map v could be either g or h contradicting the uniqueness in the universal
property.

Note

(1) We have cokernel by reversing the arrows in all of the above.

(2) Rowen sets up a partial order on monics and then picks the biggest
as the kernel but this will be the terminal one. Also don’t need pre-
additive just having zero morphism is enough.

(3) Kernel in usual sense for say R−mod is the K.

(4) But this doesn’t capture all algebraic examples of kernels. eg., ring
doesn’t have 0 morphisms so this definition doesn’t work. But it has
kernels in algebraic sense.
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