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1 Proving theorem B

Theorem B: If R is an affine domain over a field F then KdimR = trdegFR.

Proof. By induction on n = trdegFR. n = 0 follows from theorem A. Take
n > 0, by Noether normalization R is integral over R0 = F [b1, b2, . . . , bn]
and R0

∼= F [λ1, λ2, . . . , λn]. We have that every maximal ideal of R0 has
height ≥ n so KdimR0 ≥ n and integral extensions preserve Krull dimension
so KdimR ≥ n. Now suppose we have P0 ) P1 ) · · · ) Pn ) 0 a chain
in Spec(R0) which has length > n let R̄ = R0/Pn, so trdegR̄ < n. So by
induction KdimR̄ < n but P0/Pn ) P1/Pn ) · · · ) Pn/Pn = 0 is a chain of
length n in Spec(R̄).

2 Chain conditions and modules

For the rest of today R not necessary commutative.

Definition. Let S be a poset, S satisfies the ascending chain condition (ACC)
if there is no infinite strictly ascending chain in S s1 < s2 < · · · , equivalently
any weakly ascending chain in S s1 ≤ s2 ≤ · · · eventually stabilizes. i.e. ∃n
s.t sn = sn+1 = · · · .
S satisfies the descending chain condition (DCC) if there is no infinite strictly
descending chain in S s1 > s2 > · · · , equivalently any weakly descending
chain in S s1 ≥ s2 ≥ · · · eventually stabilizes. i.e. ∃n s.t sn = sn+1 = · · · .
In the case M is a left R-module and LR(M) is the lattice of submodules.
Then say M is Noetherian(Artinian) if LR(M) satisfies ACC(DCC).

Property. Let S be a poset,
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(1) S satisfies ACC iff every nonempty subset of S has a maximal element

(2) S satisfies DCC iff every nonempty subset of S has a minimal element

Proof. (1) ⇐ : Suppose we have s1 ≤ s2 ≤ · · · an ascending chain in S,
consider {s1, s2, . . .} ⊆ S this has a maximal element say si. But si ≤ si+1 ≤
. . . so si = si+1 = si+2 = . . .
⇒ : Suppose there is a subset S0 ⊆ S which doesn’t have a maximal element.
Take s1 ∈ S0, given s1 < s2 < · · · < sk ∈ S0 since sk is not maximal in
S0, ∃sk+1 ∈ S0, sk < sk+1 this builds an infinite strictly ascending chain
contradicting ACC.
(2) same by flipping ≤S i.e by dual poset.

Property. Suppose N ⊆M submodule,

(1) M is Noetherian iff N is Noetherian and M/N is Noetherian.

(2) M is Artinian iff N is Artinian and M/N is Artinian.

Proof. (1) ⇒: Any infinite ascending chain in N is also infinite ascending
chain in M so N is Notherian. An infinite ascending chain in M/N looks
like M0/N ⊆ M1/N ⊆ M2/N ⊆ · · · . Then M0 ⊆ M1 ⊆ M2 ⊆ · · · is an
infinite ascending chain in M so it eventually stabilizes, so M0/N ⊆M1/N ⊆
M2/N ⊆ · · · stabilizes.
⇐: let M0 ⊆ M1 ⊆ · · · be an ascending chain of submodules of M. Then
M0∩N ⊆M1∩N ⊆ · · · is an ascending chain of submodules of N and hence
stabilizes. Also (M1 + N)/N ⊆ (M2 + N)/N ⊆ · · · is an ascending chain of
submodules of M/N and hence stabilizes. Take i large enough that both these
chains stablized. So Mi ∩N = Mi+1 ∩N and (Mi +N)/N = (Mi+1 +N)/N
but modularity of modules says

Mi = Mi + (N ∩Mi)

= Mi + (N ∩Mi+1) = (Mi +N) ∩Mi+1

= (Mi+1 +N) ∩Mi+1

= Mi+1

So M is noetherian. (2) The same proof.

Corollary. Let M be a left R-module if M is Artinian and Noetherian then
M has a composition series.

Proof. Given any nonzero module Mi consider the set of proper submodules
of Mi. This has a maximal element Mi+1 so Mi/Mi+1 is simple. Iterating we
get M = M0 )M1 ) · · · and this terminates by Artinianess.
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Property. Let M be an left R module, M is Noetherian iff every submodule
of M is finitely generated.

Proof. ⇐: Take M0 ⊆ M1 ⊆ · · · chain of submodules of M.
⋃
Mi is finitely

generated so there is some j such that all the generators (finitely many) are
in Mj, so Mj ⊆Mj+1 ⊆ · · · ⊆

⋃
Mi ⊆Mj thus Mj = Mj+1 = · · ·

⇒: Say N is a submodule which is not finitely generated. Consider the set
of finitely generated submodules of N. This is nonempty since it contains 0.
So it contains a maximal element call it N

′
, N

′ ( N since N is assumed not
finitely generated. Take a ∈ N −N ′

then N
′
+Ra is submodule of N and is

finitely generated and properly contains N
′

contradicting the maximality of
N

′
.

3 Noetherian and Artinian rings

Definition. A ring R is left(right) Noetherian if R is Noetherian as a left(right)
R module. A ring R is left(right) Artinian if R is Artinian as a left(right) R
module.
A ring R is Noetherian(Artinian) if it is both left and right Noetherian(Artinian).
For R commutative left Noetherian(Artinian) and right Noetherian(Artinian)
are the same.

Note. (rephrasing one of the module results) A ring R is left Noetherian iff
every left ideal is finitely generated.

Property. (1) Let R be a left Noetherian ring then every finitely generated
left R-module is Noetherian.

(2) Let R be a left Artinian ring then every finitely generated left R-module
is Artinian.

Proof. (1): Any such module M has the form M ∼= R(n)/K where K is a
submodule of R(n). It suffice to show R(n) is Noetherian. Prove this by
induction on n.
n = 1, given. Take n > 1, R(n)/R ∼= R(n−1) so R(n−1) is Noetherian by
induction and R is given Noetherian. So R(n) is Noetherian.
(2) Same.

A theorem we won’t prove.
Theorem. (Corollary of Hopkins-Levitzki)
All left Artinian rings are left Noetherian.
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Example. (1) Let F be a field viewing F as a ring. Then F is both Noethe-
rian and Artinian.

(2) Let V be a vector space over a field viewing as a module. V is Noethe-
rian iff V is finite dimensional iff V is Artinian.

(3) R a PID. Since every ideal is cyclic hence finitely generated, so R is
Noetherian.

(4) R = F [λ1, λ2, . . .] is not Noetherian since 0 (< λ1 >(< λ1, λ2 >( · · · .

(5) Fix p prime, let M = {m
n

: n is a power of p} viewing M as a Z-
module (i.e an abelian group). Let N = M/Z suppose K is a submod-
ule of N, if m

n
+ Z ∈ K with g.c.d(m,n) = 1. Write am + bn = 1 so

a(m
n

+ Z) = 1
n
− bn

n
+ Z = 1

n
+ Z. Say 1

pa
+ Z ∈ K, 1

pb
+ Z ∈ K with

a < b then pb−a( 1
pb

+ Z) = 1
pa

+ Z so every nonzero submodule of N is

generated by the elements of the form 1
n

+ Z.
We have a chain (1

p
+Z)N ( ( 1

p2
+Z)N ( · · · thus n N is not Noethe-

rian.
Given a set of submodules of N take the minimum denominator of gen-
erators, this generates the minimal element of the set. Thus N is Ar-
tinian.

4 Hilberts Basis theorem

Theorem. (Hilberts basis theorem)
If R is a left Noetherian ring then the polynomial ring R[λ] is also left Noethe-
rian.

Proof. Suppose I ⊆ R[λ] is a left ideal take f1 6= 0, f1 ∈ I of least degree
proceeding inductively on i, for i ≥ 1, < f1, f2, . . . , fi >= I then we are
done. If not then pick fi+1 ∈ I\ < f1, . . . , fi > of least degree.
Let ai be the leading coefficient of fi. Since R is Noetherian so< a1, a2, . . . >⊆
R generated by a1, . . . , am. Claim f1, . . . , fm generates I. Suppose not,

am+1 =
m∑
i=1

ciai so let g =
m∑
i=1

cifiλ
(degfm+1−degfi) by construction degfm+1 −

degfi ≥ 0. Note fm+1−g has degree strictly lower than fm+1 but fm+1−g 6∈<
f1, . . . , fm > contradicting the choice of fm+1. Result follows.
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Corollary. Every affine algebra is Noetherian.

Proof. An affine algebra is of the form F [λ1, . . . , λm]/A, it suffices to show
F [λ1, . . . , λm] is Noetherian which is true by Hilberts basis theorem applied
inductively.
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