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ASSIGNMENT 2

(1) When I is the trivial order, the there is no compatibility condition because there is
no i ≤ j ∈ I. Thus being a compatible system just means being a family fi : Ai → C.
This is exactly the information that a coproduct comes with. The direct limit in this
case is the particular compatible system νi : Ai → lim

→
Ai which satisfies the following

universal property

lim
→
Ai C

Ai

νi
fi

f

which is the universal property for coproducts. Thus in this case the direct limit
is the coproduct.

(2) Consider

M =
⊕

Mi/
∑
i≤j

(νjφ
j
i − νi)Mi

Let νi be the composition of the canonical inclusion Mi →
⊕

Mi with the quotient
map

⊕
Mi →M . So νi : Mi →M .

Suppose i ≤ j. For any mi ∈Mi, νj(φ
j
i (mi))− νi(mi) is 0 in M so

Mj M

Mi

φji
νi

νj

commutes, thus we have a compatible system. Now suppose we have another
compatible system fi : Mi → C. Define f : M → C by f(

∑
mi) =

∑
fi(mi). This is

the only possibility which could give the map in the universal property because the
universal property gives that f(νi(mi)) = fi(mi) for all mi ∈Mi.

It remains to check that f is well-defined. Take some mi ∈ Mi and i ≤ j then let
m = νj(φ

j
i (mi))− νi(mi). Then

f(m) = f(φij(mi))− f(mi) = 0

since the fi with C form a compatible system. Thus∑
i≤j

(νi(φ
j
i − νi)Mi ⊆ ker(f)

and hence f is well-defined. Therefore M is the direct limit in modules.
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(3) Suppose I is directed. For a ∈i and b ∈ Aj write a ∼ b if φki a = φkj b for some k ≥ i, j.
Let

A =
⋃

Ai/ ∼

We need to show that A is an object of the category. The objects of the category
are those sets with some given relations and functions which satisfy certain first order
axioms. So proceed by induction on formulas.

Consider a quantifier free formula φ and a particular assignment of elements of⋃
Ai to the free variables of φ. There are only finitely many variables in φ, so take an

upper bound Ajof the Ai the elements assigned to them appear. By compatibility,
in Aj and every set above it in the order φ with this assignment is either true (in all
of them) or false (in all of them). By definition of ∼, φ with the assignment is true
in Aj iff it is true in A.

Consider a formula of the form ∃xφ(x) and an assignment of elements of
⋃
Ai

to the free variables of ∃xφ(x). By induction any assignement of an element to x
in φ(x) is simultaneously true in A and in all sufficiently high Aj in the order or
simultaneously false in these sets. If there is some such assignment for x making φ(x)
true then ∃xφ(x) is simultaneously true in A and in all sufficiently high Aj.

Consider a formula of the form ∀xφ(x) and an assignment of elements of
⋃
Ai

to the free variables of ∀xφ(x). By induction any assignement of an element to x
in φ(x) is simultaneously true in A and in all sufficiently high Aj in the order or
simultaneously false in these sets. If all such assignment for x from a sufficiently high
Aj make φ(x) true then ∀xφ(x) is simultaneously true in A and in all sufficiently high
Aj.

Thus we conclude that the axioms of the category, which must be true in all Aj,
must also be true in A. So A is an object in the category.

Let νi : Ai → A be the natural map Ai →
⋃
Ai composed with the quotient map⋃

Ai → A. Next we need to show that A along with the νi is a direct limit. This
works very much like the previous question.

Compatiblity holds because for ai ∈ Ai,

φji (ai)) = φjj(φ
j
i (ai))

so ai ∼ φji (ai) and so νj(φ
j
i (ai)) = νi(ai) in A.

Supppose we have another compatible system fi : Ai → C. Then define f : A→ C
by f(ai) = fi(ai) for ai ∈ A. This identity is required by the diagram, and so this is
the only possible map. The remaining question if is f is well defined.

To see that f is well defined suppose we have φki a = φkj b with a ∈ Ai and b ∈ Aj.
Then f(a) = fi(a) and f(b) = fj(b). But by compatibility

fi(a) = fk(φ
k
i (a)) = fk(φ

k
j (b)) = fj(b).

Therefore A is the direct limit in this category.

Finally, consider the case where I is a chain. Then ∼ reduces to a ∼ b if φji (a) = b,
so we are in effect identifying a with its image in all higher sets in the chain. If the
chain has an upper bound, call it Amax then this tells us that (

⋃
Ai/ ∼) ∼= Amax.
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(4) This is easier than the previous one since we aren’t asked to show the inverse limit
exists in the given category.

Let

A = {(ai) ∈
∏

Ai : ai = φjiaj∀i ≤ j}
Assume A exists in the the given category. Let νi : A→ Ai be the restriction of the
projection

∏
Ai → Ai to A.

This gives a compatible system as if ai ∈ Ai and i ≤ j then νi(ai) = φjiνj(aj) in A
by construction.

Suppose we have another compatible system gi : C → Ai. Define f : C → A by
f(c) = (gi(c)). This is the only possible map since the universal property diagram
requires νi(f(c)) = gi(c). Finally f is well defined since by compatibility φjigj(c) =
gi(c).

Thus A is the inverse limit.
(5) Let U be the forgetful functor from groups to sets. We need a natural transformation

τ such that
Hom(Z, G)

τG−−−→ UGyf∗ yUf
Hom(Z, H)

τH−−−→ UH

for any group homomorphism f : G → H, and such that each τG is a set bijection.
Note that any h ∈ Hom(Z, G) is determined by where it sends 1, and that since Z is
freely generated by 1, any value for h(1) is valid. So define τG : Hom(Z, G) → UG
by τG(h) = h(1). This is a set bijection by the above observations. The required
diagram commutes because f(τG(h)) = f(h(1)) = f∗(h)(1) = τH(f∗(h)). Thus the
forgetful functor from groups to sets is represented by Z.

(6) As many of you noticed there is a problem with (vi) because it doesn’t say anything
about how K depends on N , and hence it only tells us (dually to Proposition 2.8)
that K is a direct summand, not that it is the matching one for N . There are a
number of additional assumptions you could add to (vi) to clear this up. I’m not
sure which one is tidiest. I will add to (vi) that 0→ K →M → N → 0 is exact.

Now to solving the problem. First note that (i) ⇔ (iv) is Proposition 2.8. Also
(v)⇒ (vi) and (v)⇒ (iv) are both trivial since (vi) and (iv) are (a priori) weakenings
of (v).

(i) ⇒ (iii): Write M = K ⊕ N . Let π : M → N be the identity restricted to N
and 0 restricted to M . This is well defined since the sum is direct. Then π(M) = N
and π2 = π.

(iii)⇒ (iv): Take π from (iii). Viewed as π : M → N then π is epic and it is split
by the inclusion map of N in M .

(iii) ⇒ (ii): Take π from (iii). If π(a) = a then a ∈ π(M) so a ∈ N . If a ∈ N
then there is a b such that π(b) = a so π(a) = π2(b) = π(b) = a.

(ii) ⇒ (iii): Take π from (ii). Thus π(M) ⊆ N , and N = {a ∈ M : π(a) = a} so
π(M) = N . Also π2(b) = π(π(b)) = π(b) since π(b) ∈ N . so π2 = π.

(i)⇒ (v): Write M = K ⊕N . Then

0→ K → K ⊕N → N → 0
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is an exact sequence where the map from K to K⊕N is the natural inclusion and the
map from K ⊕N to N is the map which is the identity on N and is 0 on K (which
as noted above is well defined by directness). Both these maps split. The splitting
map from K ⊕N to K is the map which is the identity on K and 0 on N , while the
splitting map from N to K ⊕N is the natural inclusion.

Finally we need (vi) to anything else. Which one is easiest will depend on what
assumption you added to (vi). I’ll do (vi) ⇒ (v): I have already assumed we have
the exact sequence and we already know ν splits. The natural inclusion splits π and
so we’re done.

(7) First check tor(M) is a submodule of M .
Suppose m1,m2 ∈ tor(M). Then there exists s1, s2 regular elements of R such that

s1m1 = 0 and s2m2 = 0. s1s2 is also regular since if there were some other r ∈ R with
s1s2r = 0 then s1(s2r) = 0 so by regularity of s1, s2r = 0 and hence by regularity of
s2, r = 0. Also s1s2(m1 + m2) = s2(s1m1) + s1(s2m2) = 0 since R is commutative.
Thus m1 +m2 ∈ tor(M).

Suppose m ∈ tor(M). Then there exists s regular in R such that sm = 0. Suppose
also r ∈ R. Then s(rm) = r(sm) = 0 so rm ∈ tor(M).

Next check the direct sum property. To keep notation easier, we can without loss
of generality take the Mj disjoint and hence view Mj ⊆

⊕
Mi for all j.

Take
∑
mi ∈

⊕
tor(Mi). Say simi = 0 with si regular. As the sum is finite

s =
∏
si ∈ R and s is regular by induction on the argument used above in closure

under +. Furthermore s(
∑
mi) = 0. so

∑
mi ∈ tor

⊕
Mi. Therefore

⊕
torMi ⊆

tor
⊕

Mi.
Take

∑
mi in tor

⊕
Mi and say s

∑
mi = 0 with s regular. Then

∑
smi = 0 and

by directness smi = 0 for all i. Therefore
∑
mi ∈

⊕
torMi. Therefore tor

⊕
Mi ⊆⊕

torMi.
All together tor

⊕
Mi =

⊕
torMi.

(8) For groups we need chains where the factors make sense, so we need chains of the
form

G = G0 BG1 B · · ·BGt

Such a chain is called a subnormal chain. Equivalence of chains is the same as in the
module case. A composition series of groups is a subnormal chain which ends at 0
and with all quotients Gi/Gi+1 simple. The theorem then will say that if a group has
a composition series, then
• Every finite subnormal chain beginning at G can be refined to a composition

series
• Every composition series of G has the same length, `(G)
• For every normal subgroup H of G, H and G/H have composition series and
`(G) = `(H) + ell(G/H).

(9) I didn’t say anything about finitely generated so consider M = R[λ1, λ2, . . .] as an R
module. We have the infinite chain of modules M ⊃ R[λ2, λ3, . . .] ⊃ R[λ3, λ4, . . .] ⊃
· · · . If M had a composition series, say of length n, then truncate the infinite chain of
modules to length n+ 1, and by the composition series theorem we would have to be
able to refine this chain to a composition series of length n. This is a contradiciton.
Therefore M has no composition series.
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