COMMUTATIVE ALGEBRA, FALL 2013

ASSIGNMENT 3 SOLUTIONS

(1) Suppose $a \in T$ and $r \in R$ with the property that $f(r) a \neq a f(r)$. Consider then $\hat{f}(\lambda) \hat{(} f)(r)$. By equation 5.2 this would be $a f(r)$, but for \hat{f} to be a homomorphism it must also equal $\hat{f}(r \lambda$) (since λ is a commuting indeterminate), which by equation 5.2 is $f(r) a$. Buit $f(r) a \neq a f(r)$ so equation 5.2 does not define a homomorphism.
(2) Let R be an affine algebra. Write $R=F\left[\lambda_{1}, \ldots, \lambda_{n}\right] / A$ for A some ideal of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ has a basis

$$
\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}, \lambda_{1}^{2}, \lambda_{1} \lambda_{2}, \lambda_{1} \lambda_{3}, \ldots, \lambda_{2}^{2} \ldots, \lambda_{1}^{3}, \ldots\right\}
$$

which is countable (first list all the monomials of degree 1 , then all the monomials of degree 2 , and so on). $R=F\left[\lambda_{1}, \ldots, \lambda_{n}\right] / A$ is a subspace and so also has countable dimension.
(3) Suppose

$$
\sum_{i=1}^{n} f_{i}\left(\frac{1}{\lambda-\alpha_{i}}\right)=0
$$

for some $f_{i} \in F$. Then clearing denominators we get

$$
\sum_{i=1}^{n} f_{i} \prod_{i \neq j}\left(\lambda-\alpha_{i}\right)=0
$$

Now specialize λ to α_{1} to get $f_{1}=0$. Similarly for the other values of i we get $f_{i}=0$ for all i. Thus the original set is linearly independent over F and so $[F(\lambda): F] \geq|F|$.
(4) Let $i=\sqrt{-1} . \mathbb{Z}[i]$ is integral over \mathbb{Z} since i satisfies $\lambda^{2}+1=0$.

Observe that the norm (absolute value) of a product of complex numbers is the product of their norms and if $|a+b i|=1$ with $a, b \in \mathbb{Z}$, then $a^{2}+b^{2}=1$ so $a+b i \in\{1,-1, i,-i\}$ which are the units of $\mathbb{Z}[i]$.

The elements of norm 5 in $\mathbb{Z}[i]$ satisfy $|a+b i|=5$ so $a^{2}+b^{2}=5$ so $\{ \pm a, \pm b\}=\{1,2\}$. By multiplying by i (a unit) if necessary we may assume that $b= \pm 1$ and $a= \pm 2$. Then multiplying by -1 if necessary we may assume $a=2$.

Now $5=2^{2}+1^{2}=(2+i)(2-i)$. Consider the ideal $P_{1}=\langle 2+i\rangle$ in $\mathbb{Z}[i] . P_{1}$ lies over $5 \mathbb{Z}$ because if $(2+i)(a+b i) \in \mathbb{Z}$ then $(2+i)(a+b i)=2 a-b+(a+2 b) i \in \mathbb{Z}$, so $a+2 b=0$, so $(2+i)(a+b i)=2(-2 b)-b=-5 b \in 5 \mathbb{Z} . P_{1}$ is prime because $|2+i|=5$, so if this element is a product of two others, then one of the two must have norm 1 and hence be a unit.

Furthermore, P_{1} is maximal for the following reason. If we were to adjoin any element of norm relatively prime to 5 , then the norm of the gcd of these elements would be 1 and hence the ideal would contain a unit. On the other hand if we were to adjoin a multiple of $2-i$, say $z(2-i)$ then $(2+i) z(2-i)-z(2+i)-z(2-i)=z$
is in the ideal. Continuing likewise we can remove all powers of $2-i$ from z and then either get 1 in the ideal or an element of norm relatively prime to 5 , hence again 1 .

By an analogous argument $P_{2}=\langle 2-i\rangle$ is also a maximal ideal of $\mathbb{Z}[i]$ which lies over $5 \mathbb{Z}$, thus two different ideals lie over $5 \mathbb{Z}$.

Let $P=p \mathbb{Z}$ be a prime ideal of \mathbb{Z}. Suppose we can write $p=a^{2}+b^{2}$ in \mathbb{Z} (which by number theory we know occurs when $p \equiv 1 \bmod 4$, and the decomposition as two squares is unique up to order and signs of a and b). Then the same argument as above will give that $P_{1}=\langle a+b i\rangle$ and $P_{2}=\langle a-b i\rangle$ are distinct maximal ideals of $\mathbb{Z}[i]$ which lie over P.

If we cannot write $p=a^{2}+b^{2}$ then there is no element of $\mathbb{Z}[i]$ of norm p. So any factor of p in $\mathbb{Z}[i]$ has norm 1 or p^{2}. Thus p is itself irreducible in $\mathbb{Z}[i]$, and hence the ideal, P^{\prime} generated by p in $\mathbb{Z}[i]$ is a prime ideal lying over $p \mathbb{Z} . P^{\prime}$ is the only ideal lying over P because P^{\prime} is generated by the generator of P which must be in any ideal lying over P.
(5) Suppose we have $\phi: C \rightarrow K$ with K algebraically closed. ker ϕ is an ideal of C and so $C / \operatorname{ker} \phi$ is isomorphic to a subring of K and hence is an integral domain. Therefore ker ϕ is a prime ideal of C.

By LO there exists a prime ideal Q of R lying over $\operatorname{ker} \phi$. That is $Q \cap C=$ $\operatorname{ker} \phi$. Then R / Q is integral over $C / \operatorname{ker} \phi$ and hence is integral over K. But K is algebraically closed, so $R / Q \cong K$; call the isomorphism ψ. By construction, ψ extends the isomorphism of $C / \operatorname{ker} \phi$ to a subalgebra of K. Hence the map $R \rightarrow K$ given by $r \mapsto \psi(r+Q)$ gives the desired homomorphism extending ϕ.
(6) Let $P=\left\langle\lambda_{1}-\lambda_{4}^{3}, \lambda_{2}-\lambda_{4}^{4}, \lambda_{3}-\lambda_{4}^{5}\right\rangle$.
P is prime because $F\left[\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right] / P \cong F\left[\lambda_{4}\right]$ via $\lambda_{1} \mapsto \lambda_{4}^{3}, \lambda_{2} \mapsto \lambda_{4}^{4}, \lambda_{3} \mapsto \lambda_{4}^{5}$, $\lambda_{4} \mapsto \lambda_{4}$, and $F\left[\lambda_{4}\right]$ is an integral domain. Further $F\left[\lambda_{4}\right]$ is not a field, so P is not maximal.

Let $Q=P \cap C$ where $C=F\left[\lambda_{1}, \lambda_{2}, \lambda_{3}\right]$. Then Q is a prime ideal of C. Note that $\lambda_{1} \lambda_{3}-\lambda_{2}^{2} \in Q$. Then $0 \subsetneq\left\langle\lambda_{1} \lambda_{3}-\lambda_{2}^{2}\right\rangle \subsetneq Q$ each of which is prime, so the height of Q is at least 2. On the other hand, the transcendence degree, and hence the Krull dimension, of C is 3 . Further, Q is not maximal because P is not maximal and P lies over Q and R is integral over C. Thus the height of Q is at most $3-1=2$. Therefore the height of Q is 2 .

Notice that two more elements of Q are $\lambda_{3}^{2}-\lambda_{1}^{2} \lambda_{2}$ and $\lambda_{1}^{3}-\lambda_{2} \lambda_{3}$. Next note that Q contains no elements with a (nonzero) constant term because P contains no such elements (since the generators have no constant terms so all linear combinations of them also have no constant terms).

Suppose Q has an element with a linear term. Suppose it can be written

$$
p_{1}\left(\lambda_{1}-\lambda_{4}^{3}\right)+p_{2}\left(\lambda_{2}-\lambda_{4}^{4}\right)+p_{3}\left(\lambda_{3}-\lambda_{4}^{5}\right)
$$

with $p_{i} \in F\left[\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right]$. Let c_{i} be the constant term of p_{i}. The $-c_{1} \lambda_{4}^{3}$ cannot cancel with another term since all other terms are either higher degree in λ_{4} or involve another variable. Thus $c_{1}=0$. For the $-c_{2} \lambda_{4}^{4}$ term to cancel we must have $c_{2} \lambda_{4}$ as a term in p_{1}. Then we also get a $c_{2} \lambda_{1} \lambda_{4}$ term which cannot be cancelled, and so $c_{2}=0$.

Similarly then to cancel $-c_{3} \lambda_{4}^{5}$ we must have $d_{1} \lambda_{4}^{2}$ in p_{1} and $d_{2} \lambda_{4}$ in p_{2} with $d_{1}+d_{2}=$ c_{3}. But then we get $d_{1} \lambda_{4}^{2} \lambda_{1}$ and $d_{2} \lambda_{2} \lambda_{4}$ terms neither of which can be cancelled, and
so $d_{1}=d_{2}=0$. This give $c_{3}=0$, and thus Q contains no element with a nonzero linear term.

Consider the homogeneous components of degree 2 of elements of Q. We know $\lambda_{1} \lambda_{3}-\lambda_{2}^{2}, \lambda_{3}^{2}$, ad $\lambda_{2} \lambda_{3}$ are examples. But these three elements alone span a vector space of dimension 3 , and multiplying by nonconstant polynomials only increases the degree. Therefore Q has at least 3 generators. In particular Q cannot be generated by 2 elements.
(7) Let $M_{i}=\left\{\frac{m}{n}: \operatorname{gcd}(m, n)=1, n\right.$ involves none of the first i primes $\}$. Let $N_{i}=M_{i} / \mathbb{Z}$.

$$
\mathbb{Q}=M_{0} \supsetneq M_{1} \supsetneq M_{2} \supsetneq \cdots
$$

so

$$
\mathbb{Q} / \mathbb{Z}=N_{0} \supseteq N_{1} \subseteq N_{2} \supseteq \cdots
$$

The only question remaining is whether the containments remain strict after modding out by \mathbb{Z}. Let p_{i} be the i th prime. Take $\frac{1}{p_{i}}+\mathbb{Z} \in N_{i+1}$. If $\frac{1}{p_{i}}+\mathbb{Z} \in N_{i}$ then there exists $\frac{m}{n}$ with $\operatorname{gcd}\left(n, p_{i}\right)=1$ and $\frac{m}{n}-\frac{1}{p_{i}}=\ell \in \mathbb{Z}$. But then $m p_{i}-n=\ell n p_{i}$ which is impossible. Thus the containments are strict and so \mathbb{Q} / \mathbb{Z} is not Artinian.
(8) Take a finitely generated submodule N of M. Then N is Noetherian since it is finitely generated, and M / N is Noetherian by hypothesis. So by a result from class M is also Noetherian.
(9) Here are a few which were bad enough that we commented on them in class. Sloppyness regarding 0 and ultrafilters in the ch 0 problems. The ideal in ch 6 exercise 9. $\mathrm{A} \neq$ which should be an $=$ in Lemma 6.30. How many more did you find?

