COMMUTATIVE ALGEBRA, FALL 2013

ASSIGNMENT 4 SOLUTIONS

(1) These two questions end up being quite similar.

Rowen ch8 \#2 Let $\Lambda=\left\{\lambda_{s}: s \in S\right\}$ be a set of commuting indeterminates. Let $R[\Lambda]$ be the polynomial ring in Λ and let

$$
T=R[\Lambda] /\left\langle s \lambda_{s}-1: s \in S\right\rangle
$$

Note that the map $\phi: R \rightarrow T$ which takes $r \in R$ to the constant polynomial r has each $\phi(s), s \in S$, invertible with inverse λ_{s}, and central since S is central in R and R is central in $R[\Lambda]$.
Now suppose we have $f: R \rightarrow T^{\prime}$ an algebra homomorphism with $f(s)$ invertible and central for all $s \in S$. Then we want a map $\hat{f}: T \rightarrow T^{\prime}$ with $f=\hat{f} \phi$. To defne \hat{f}, first define $\hat{f}: R[\Lambda] \rightarrow T$ by $\hat{f}(r)=f(r)$ for $r \in R$ and $\hat{f}\left(\lambda_{s}\right)=f(s)^{-1}$ for $s \in S$. Extending this as an algebra homomorphism we get $\hat{f}\left(s \lambda_{s}-1\right)=$ $f(s) f(s)^{-1}-1=0$ and so \hat{f} also gives a well defined algebra homomorphism from F to F^{\prime}. It is the unique such map with $f=\hat{t} \phi$ because that equation forces the behaviour of \hat{f} on R and Λ.
Therefore by the universal property of localization $T=S^{-1} R$.
Rowen ch8 \#4 Let \mathcal{R} and f_{s} be as in the question. View R inside \mathcal{R} via $\phi: r \mapsto(R 1$, multiplication by $r)$.
Let T be the subring of \mathcal{R} generated by R and $\left\{\left(R s, f_{s}\right): s \in S\right\}$. Note that $(\phi(s))\left(R s, f_{s}\right)=(R s, \mathrm{id})$ which is equivalent to ($R 1, \mathrm{id}$) since they agree on their intersection, and $(R 1, \mathrm{id})=1$ in T. Furthermore $\phi(s)$ is central in T since S is central in R.
Now suppose we have $f: R \rightarrow T^{\prime}$ an algebra homomorphism with $f(s)$ invertible and central for all $s \in S$. Then we want a map $\hat{f}: T \rightarrow T^{\prime}$ with $f=\hat{f} \phi$. Define $\hat{f}: T \rightarrow T^{\prime}$ by $(R 1$, mult by $r) \mapsto f(r)$ for $r \in R$ and $\left(R s, f_{s}\right) \mapsto f(s)^{-1}$ for $s \in S$, annd extended as an algebra homomorphism. This is well defined as if some polynomial in the generators of R is zero then the analagous expression in $f(r), f(s)^{-1}$ is zero. \hat{f} is unique as the action on the generators is determined by $f=\hat{f} \phi$.
Therefore by the universal property of localization $T=S^{-1} R$.
(2) Take $P \in \operatorname{Spec} C$. We can localize everything at $C \backslash P$ (this is still a multiplicative subset of R), and so can assume that C is local with maximal ideal P.

Suppose $1 \in P R$ so $1=\sum_{i=1}^{t} p_{i} r_{i}$ for some $r_{i} \in R, p_{i} \in P$. Then let $R^{\prime}=$ $C\left[r_{1}, \ldots, r_{t}\right]$. Then $1 \in P R^{\prime}$, so since $P R^{\prime}$ is an ideal then we have $R^{\prime}=P R^{\prime}$. But R^{\prime} is a finitely generated C modulate, so by Nakayama's lemma $P R^{\prime} \neq R^{\prime}$ which is a contradiction.

Therefore $1 \notin P R$. So $C \cap P R$ is a proper ideal of C, and $P \subseteq C \cap P R$. Therefore as C is local $P=C \cap P R$.

Furthermore $P R$ is maximal hence prime as $R / P R$ is integral over C / P (simply mod out the polynomials) so C / P a field implies that for any $a \in R / P R$ we have $C / P[a]$ is a field, so $a^{-1} \in C / P[a] \subseteq R / P R$, and so $R / P R$ is also a field.

Returning to the original C, we still have $C \cap P R=P$ as if it were larger then it would remain larger (hence equal to C) upon localization, since if $x \in(C \backslash P) \cap P R$ then $x \in C, x \in P R$, so $x \in C \cap P R$ so $x \in P$ which would be a contradiction.

And finally since localization takes prime ideals to prime ideals and vice versa, $P R$ remains prime in the original setup.
(3) Take P with height at least 2 . Suppose there are only fininitely many height 1 prime ideals contained in P. Call them P_{1}, \ldots, P_{t}.

Suppose $P_{1} \cup \cdots \cup P_{t}=P$. Then by prime exclusion $P=P_{i}$ for some i contradicting the height of P_{i}.

Since we haven't done prime exclusion let's prove it in the form we need here. Throw away P_{j} if necessary until $P_{i} \nsubseteq \bigcup_{j \neq i} P_{j}$. Assume $t \geq 2$. Take $a_{i} \in P_{i} \backslash P_{t}$ for $i<t$ and take $a_{t} \in P_{t} \backslash \bigcup_{i<t} P_{i}$.

Then $a_{1} \cdots a_{t-1} \notin P_{t}$ since P_{t} is prime. If $a_{t}+a_{1} \cdots a_{t=1} \in P_{t}$ then we get $a_{1} \cdots a_{t-1} \in P_{t}$ which is a contradiction. On the other hand if $a_{t}+a_{1} \cdots a_{t-1} \in$ $P_{1} \cup \cdots \cup P_{t-1}$ then $a_{t} \in P_{1} \cup \cdots P_{t-1}$ which is also a contradiction. Thus we must have $t=1$ and so $P=P_{i}$ for some i.

Now returning to the main argument, $P_{1} \cup \cdots \cup P_{t} \neq P$ so there exists an $a \in P$ with $a \notin P_{1} \cup \cdots \cup P_{t}$. So P is minimal over a which contradicts the principal ideal theorem.
(4) If R is a field then every R-module is a vector space and every exact sequence of vector spaces splits, so every R-module is projective.

If R is a domain and every R-module is projective. Take $a \neq 0, a \in R$ and consider $a R$. We have the exact sequence $0 \rightarrow R \rightarrow R \rightarrow R / a R \rightarrow 0$ where the map from R to R is multiplication by a; call this map f. This exact sequence is split by assumption, so by an old homework, f in particular is split, that is there exists a $g: R \rightarrow R$ such that $g f=1_{R}$. So $g(f(1))=1$ so $g(a)=1$. But g is a module homomorphism so $a g(1)=g(a)=1$ and so a is a unit in R.

Therefore R is a field.
(5) Given

and having defined $H_{n}\left(f_{\bullet}\right): H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(C_{\bullet}^{\prime}\right)$ by $z_{n}+B\left(C_{\bullet}\right) \mapsto f_{n} z_{n}+B\left(C_{\bullet}^{\prime}\right)$ we need to check the following:

First $f_{n} z_{n}$ is a cycle: We know z_{n} is a cycle so $d_{n} z_{n}=0$ so $d_{n}^{\prime} f_{n} z_{n}=f_{n-1} d_{n} z_{n}=0$ so $f_{n} z_{n}$ is a cycle.

Next check that the definition is independent of choices. Say $z_{n}+B_{n}\left(C_{\bullet}\right)=$ $z_{n}^{\prime}+B_{n}\left(C_{\bullet}\right)$. So $z_{n}-z_{n}^{\prime} \in B_{n}\left(C_{\bullet}\right)$. So $z_{n}-z_{n}^{\prime}=d_{n+1} c$ for some $c \in C_{n+1}$, so $f_{n} z_{n}-f_{n} z_{n}^{\prime}=f_{n} d_{n+1} c=d_{n+1}^{\prime} f_{n+1} c \in B_{n}\left(C_{\bullet}^{\prime}\right)$. So $f_{n} z_{n}+B_{n}\left(C_{\bullet}^{\prime}\right)=f_{n} z_{n}^{\prime}+B_{n}\left(C_{\bullet}^{\prime}\right)$.

Next note that $H_{n}\left(1_{C}\right)$ is the identity by definition.
Finally $H_{n}(g f): z_{n}+B_{n} \mapsto g_{n}\left(f_{n}\left(z_{n}+B_{n}\right)\right)=H_{n}(g)\left(H_{n}(f)\left(z_{n}+B_{n}\right)\right)$ so H_{n} is a functor.
(6) This one is a diagram chase.

First I need to label the maps:

Take $k^{\prime} \in K^{\prime}$. Suppose $\alpha\left(k^{\prime}\right)=0$ so $k^{\prime} \in \operatorname{ker} \alpha$. Then $\delta \alpha\left(k^{\prime}\right)=0$ so $\eta \gamma\left(k^{\prime}\right)=0$. But η is injective so $\gamma\left(k^{\prime}\right)=0 . \gamma$ is injective so $k^{\prime}=0$ and hence ker $\alpha=0$ as it should.

Also for $k^{\prime} \in K^{\prime}$ (without other hypotheses), consider $\alpha\left(k^{\prime}\right) . \delta \alpha\left(k^{\prime}\right)=\eta \gamma\left(k^{\prime}\right)$ so $\epsilon \beta \alpha\left(k^{\prime}\right)=\zeta \delta \alpha\left(k^{\prime}\right)=0 \gamma\left(k^{\prime}\right)=0$. But ϵ is injective so $\beta \alpha\left(k^{\prime}\right)=0$. Therefore $\alpha\left(k^{\prime}\right) \in \operatorname{ker} \beta$.

Take $k \in K$. Suppose $\beta(k)=0$ so $k \in \operatorname{ker} \beta$. Then $\epsilon \beta(k)=0$ so $\zeta \delta(k)=0$. So $\delta(k) \in \operatorname{ker} \zeta=\operatorname{im} \eta$. So there exists a $p^{\prime} \in P^{\prime}$ with $\eta\left(p^{\prime}\right)=\delta(k)$. Also $\mu \theta\left(p^{\prime}\right)=$ $\kappa \eta\left(p^{\prime}\right)=\kappa \delta(k)=0$. But μ is injective so $\theta\left(p^{\prime}\right)=0$. Therefore $p^{\prime} \in \operatorname{ker} \theta=\operatorname{im} \gamma$ so there exists $k^{\prime} \in K^{\prime}$ with $\gamma\left(k^{\prime}\right)=p^{\prime}$. So $\delta \alpha=\eta \gamma\left(k^{\prime}\right)=\eta\left(p^{\prime}\right)=\delta(k)$ and δ is injective so $\alpha\left(k^{\prime}\right)=k$. Thus $k \in \operatorname{im} \alpha$.

Taking the two previous paragraphs together we have $\operatorname{ker} \alpha=\operatorname{im} \beta$.
Next take $k^{\prime \prime} \in K^{\prime \prime}$. Then $\epsilon\left(k^{\prime \prime}\right) \in P^{\prime \prime}$. But ζ is onto so there exists $p \in P$ with $\zeta(p)=\epsilon\left(k^{\prime \prime}\right)$. Then $\pi \kappa(p)=\nu \zeta(p)=\nu \epsilon\left(k^{\prime \prime}\right)=0$, so $\kappa(p) \in \operatorname{ker} \pi=\operatorname{im} \mu$. So there exists $a^{\prime} \in A^{\prime}$ with $\mu\left(a^{\prime}\right)=\kappa(p)$. But θ is onto so there exists $p^{\prime} \in P^{\prime}$ with $\theta\left(p^{\prime}\right)=a^{\prime}$. So $\kappa \nu\left(p^{\prime}\right)=\mu \theta\left(p^{\prime}\right)=\kappa(p)$. So $p-\eta\left(p^{\prime}\right) \in \operatorname{ker} \kappa=\operatorname{im} \delta$. Say $k \in K$ with $\delta(k)=p-\eta\left(p^{\prime}\right)$. Then $\epsilon \beta(k)=\zeta \delta(k)=\zeta(p)-\zeta \eta\left(p^{\prime}\right)=\zeta(p)=\epsilon\left(k^{\prime \prime}\right)$ but ϵ is injective so $\beta(k)=k^{\prime \prime}$ and thus $\operatorname{im} \beta=K^{\prime \prime}$.

This completes the proof.
(7) G is free abelian means G is free as a \mathbb{Z}-module. Suppose G is free abelian. Then also G is projective as a \mathbb{Z}-module. So $\operatorname{Ext}^{1}(G, F)=0$ for all \mathbb{Z}-modules F. So in particular $E x t^{1}(G, F)=0$ for F free abelian.

Suppose $\operatorname{Ext}^{1}(G, F)=0$ for all F free abelian. Then consider the map $p: \mathbb{Z}^{|G|} \rightarrow G$ defined by taking the generator indexed by g to g itself for $g \in G$. Then $0 \rightarrow \operatorname{ker} p \rightarrow$ $\mathbb{Z}^{|G|} \rightarrow G \rightarrow 0$ is exact. Now ker $p \subseteq \mathbb{Z}^{|G|}$ but subgroups of free abelian groups are free abelian, so ker p is free abelian. Thus by hypothesis this exact sequence splits. So G is also a subgroup of $\mathbb{Z}^{|G|}$ and hence is also free abelian.
(8) answers will vary

