
COMMUTATIVE ALGEBRA, FALL 2013

ASSIGNMENT 4 SOLUTIONS

(1) These two questions end up being quite similar.
Rowen ch8 #2 Let Λ = {λs : s ∈ S} be a set of commuting indeterminates. Let R[Λ] be the

polynomial ring in Λ and let

T = R[Λ]/〈sλs − 1 : s ∈ S〉

Note that the map φ : R → T which takes r ∈ R to the constant polynomial r
has each φ(s), s ∈ S, invertible with inverse λs, and central since S is central in
R and R is central in R[Λ].
Now suppose we have f : R→ T ′ an algebra homomorphism with f(s) invertible

and central for all s ∈ S. Then we want a map f̂ : T → T ′ with f = f̂φ. To
defne f̂ , first define f̂ : R[Λ]→ T by f̂(r) = f(r) for r ∈ R and f̂(λs) = f(s)−1

for s ∈ S. Extending this as an algebra homomorphism we get f̂(sλs − 1) =

f(s)f(s)−1 − 1 = 0 and so f̂ also gives a well defined algebra homomorphism
from F to F ′. It is the unique such map with f = t̂φ because that equation
forces the behaviour of f̂ on R and Λ.
Therefore by the universal property of localization T = S−1R.

Rowen ch8 #4 LetR and fs be as in the question. ViewR insideR via φ : r 7→ (R1,multiplication by r).
Let T be the subring of R generated by R and {(Rs, fs) : s ∈ S}. Note that
(φ(s))(Rs, fs) = (Rs, id) which is equivalent to (R1, id) since they agree on their
intersection, and (R1, id) = 1 in T . Furthermore φ(s) is central in T since S is
central in R.
Now suppose we have f : R→ T ′ an algebra homomorphism with f(s) invertible

and central for all s ∈ S. Then we want a map f̂ : T → T ′ with f = f̂φ. Define
f̂ : T → T ′ by (R1,mult by r) 7→ f(r) for r ∈ R and (Rs, fs) 7→ f(s)−1 for
s ∈ S, annd extended as an algebra homomorphism. This is well defined as if
some polynomial in the generators of R is zero then the analagous expression in
f(r), f(s)−1 is zero. f̂ is unique as the action on the generators is determined

by f = f̂φ.
Therefore by the universal property of localization T = S−1R.

(2) Take P ∈ SpecC. We can localize everything at C r P (this is still a multiplicative
subset of R), and so can assume that C is local with maximal ideal P .

Suppose 1 ∈ PR so 1 =
∑t

i=1 piri for some ri ∈ R, pi ∈ P . Then let R′ =
C[r1, . . . , rt]. Then 1 ∈ PR′, so since PR′ is an ideal then we have R′ = PR′. But
R′ is a finitely generated C modulate, so by Nakayama’s lemma PR′ 6= R′ which is
a contradiction.

Therefore 1 6∈ PR. So C ∩PR is a proper ideal of C, and P ⊆ C ∩PR. Therefore
as C is local P = C ∩ PR.
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Furthermore PR is maximal hence prime as R/PR is integral over C/P (simply
mod out the polynomials) so C/P a field implies that for any a ∈ R/PR we have
C/P [a] is a field, so a−1 ∈ C/P [a] ⊆ R/PR, and so R/PR is also a field.

Returning to the original C, we still have C ∩ PR = P as if it were larger then it
would remain larger (hence equal to C) upon localization, since if x ∈ (C rP )∩PR
then x ∈ C, x ∈ PR, so x ∈ C ∩ PR so x ∈ P which would be a contradiction.

And finally since localization takes prime ideals to prime ideals and vice versa, PR
remains prime in the original setup.

(3) Take P with height at least 2. Suppose there are only fininitely many height 1 prime
ideals contained in P . Call them P1, . . . , Pt.

Suppose P1∪· · ·∪Pt = P . Then by prime exclusion P = Pi for some i contradicting
the height of Pi.

Since we haven’t done prime exclusion let’s prove it in the form we need here.
Throw away Pj if necessary until Pi 6⊆

⋃
j 6=i Pj. Assume t ≥ 2. Take ai ∈ Pi r Pt for

i < t and take at ∈ Pt r
⋃

i<t Pi.
Then a1 · · · at−1 6∈ Pt since Pt is prime. If at + a1 · · · at=1 ∈ Pt then we get

a1 · · · at−1 ∈ Pt which is a contradiction. On the other hand if at + a1 · · · at−1 ∈
P1 ∪ · · · ∪ Pt−1 then at ∈ P1 ∪ · · ·Pt−1 which is also a contradiction. Thus we must
have t = 1 and so P = Pi for some i.

Now returning to the main argument, P1 ∪ · · · ∪ Pt 6= P so there exists an a ∈ P
with a 6∈ P1 ∪ · · · ∪ Pt. So P is minimal over a which contradicts the principal ideal
theorem.

(4) If R is a field then every R-module is a vector space and every exact sequence of
vector spaces splits, so every R-module is projective.

If R is a domain and every R-module is projective. Take a 6= 0, a ∈ R and consider
aR. We have the exact sequence 0→ R→ R→ R/aR→ 0 where the map from R to
R is multiplication by a; call this map f . This exact sequence is split by assumption,
so by an old homework, f in particular is split, that is there exists a g : R→ R such
that gf = 1R. So g(f(1)) = 1 so g(a) = 1. But g is a module homomorphism so
ag(1) = g(a) = 1 and so a is a unit in R.

Therefore R is a field.
(5) Given

Cn+1 Cn Cn−1

C ′n+1 C ′n C ′n−1

dn+1 dn

d′n+1 d′n

fn+1 fn fn−1

and having defined Hn(f•) : Hn(C•)→ Hn(C ′•) by zn +B(C•) 7→ fnzn +B(C ′•) we
need to check the following:

First fnzn is a cycle: We know zn is a cycle so dnzn = 0 so d′nfnzn = fn−1dnzn = 0
so fnzn is a cycle.

Next check that the definition is independent of choices. Say zn + Bn(C•) =
z′n + Bn(C•). So zn − z′n ∈ Bn(C•). So zn − z′n = dn+1c for some c ∈ Cn+1, so
fnzn − fnz′n = fndn+1c = d′n+1fn+1c ∈ Bn(C ′•). So fnzn +Bn(C ′•) = fnz

′
n +Bn(C ′•).

2



Next note that Hn(1C•) is the identity by definition.
Finally Hn(gf) : zn + Bn 7→ gn(fn(zn + Bn)) = Hn(g)(Hn(f)(zn + Bn)) so Hn is a

functor.
(6) This one is a diagram chase.

First I need to label the maps:

K ′ K K ′′

0 0 0

0 0

P ′ P P ′′0 0

A′ A A′′0 0

0 0 0

α β

η ζ

η ζ

γ δ ε

θ κ ν

Take k′ ∈ K ′. Suppose α(k′) = 0 so k′ ∈ kerα. Then δα(k′) = 0 so ηγ(k′) = 0.
But η is injective so γ(k′) = 0. γ is injective so k′ = 0 and hence kerα = 0 as it
should.

Also for k′ ∈ K ′ (without other hypotheses), consider α(k′). δα(k′) = ηγ(k′)
so εβα(k′) = ζδα(k′) = 0γ(k′) = 0. But ε is injective so βα(k′) = 0. Therefore
α(k′) ∈ ker β.

Take k ∈ K. Suppose β(k) = 0 so k ∈ ker β. Then εβ(k) = 0 so ζδ(k) = 0. So
δ(k) ∈ ker ζ = imη. So there exists a p′ ∈ P ′ with η(p′) = δ(k). Also µθ(p′) =
κη(p′) = κδ(k) = 0. But µ is injective so θ(p′) = 0. Therefore p′ ∈ ker θ = imγ so
there exists k′ ∈ K ′ with γ(k′) = p′. So δα = ηγ(k′) = η(p′) = δ(k) and δ is injective
so α(k′) = k. Thus k ∈ imα.

Taking the two previous paragraphs together we have kerα = imβ.
Next take k′′ ∈ K ′′. Then ε(k′′) ∈ P ′′. But ζ is onto so there exists p ∈ P with

ζ(p) = ε(k′′). Then πκ(p) = νζ(p) = νε(k′′) = 0, so κ(p) ∈ kerπ = imµ. So
there exists a′ ∈ A′ with µ(a′) = κ(p). But θ is onto so there exists p′ ∈ P ′ with
θ(p′) = a′. So κν(p′) = µθ(p′) = κ(p). So p − η(p′) ∈ kerκ = imδ. Say k ∈ K with
δ(k) = p−η(p′). Then εβ(k) = ζδ(k) = ζ(p)−ζη(p′) = ζ(p) = ε(k′′) but ε is injective
so β(k) = k′′ and thus imβ = K ′′.

This completes the proof.
(7) G is free abelian means G is free as a Z-module. Suppose G is free abelian. Then

also G is projective as a Z-module. So Ext1(G,F ) = 0 for all Z-modules F . So in
particular Ext1(G,F ) = 0 for F free abelian.
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Suppose Ext1(G,F ) = 0 for all F free abelian. Then consider the map p : Z|G| → G
defined by taking the generator indexed by g to g itself for g ∈ G. Then 0→ ker p→
Z|G| → G → 0 is exact. Now ker p ⊆ Z|G| but subgroups of free abelian groups are
free abelian, so ker p is free abelian. Thus by hypothesis this exact sequence splits.
So G is also a subgroup of Z|G| and hence is also free abelian.

(8) answers will vary
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