COMMUTATIVE ALGEBRA, FALL 2013

ASSIGNMENT 4 SOLUTIONS

(1) These two questions end up being quite similar.
Rowen ch8 #2 Let A = {)\; : s € S} be a set of commuting indeterminates. Let R[A] be the
polynomial ring in A and let

T =R[A]/(sAs —1:5€5)

Note that the map ¢ : R — T which takes r € R to the constant polynomial r
has each ¢(s), s € S, invertible with inverse A, and central since S is central in
R and R is central in R[A].

Now suppose we have f : R — T" an algebra homomorphism with f (s) invertible
and central for all s € S. Then we want a map f T — T with f = fqb To
defne f, first define f : R[A] — T by f(r) = f(r) for r € R and f()\,) = f(s)™!
for s € S. Extending this as an algebra homomorphism we get f (shs — 1) =
f(s)f(s)™' =1 =0 and so f also gives a well defined algebra homomorphism
from F to F'. It is the unique such map with f = ¢ because that equation
forces the behaviour of f on R and A.

Therefore by the universal property of localization T'= S~ R.

Rowen ch8 #4 Let R and f; be as in the question. View R inside R via ¢ : r — (R1, multiplication by r).
Let T be the subring of R generated by R and {(Rs, fs) : s € S}. Note that
(o(s))(Rs, fs) = (Rs,id) which is equivalent to (R1,id) since they agree on their
intersection, and (R1,id) = 1 in 7. Furthermore ¢(s) is central in 7" since S is
central in R.

Now suppose we have f : R — T" an algebra homomorphism with f(s) invertible
and central for all s € S. Then we want a map f : 7' — T” with f = f¢. Define
f:T — T by (Rl,mult by ) — f(r) for r € R and (Rs, f,) — f(s)"! for
s € §, annd extended as an algebra homomorphism. This is well defined as if
some polynomial in the generators of R is zero then the analagous expression in
F(r), f(s)™"is zero. f is unique as the action on the generators is determined
by f = fo.
Therefore by the universal property of localization T'= S™!R.

(2) Take P € SpecC. We can localize everything at C' . P (this is still a multiplicative

subset of R), and so can assume that C' is local with maximal ideal P.

Suppose 1 € PR so 1 = Zﬁzlpm for some r; € R, p; € P. Then let R =
Clri,...,r]. Then 1 € PR/, so since PR’ is an ideal then we have R' = PR'. But
R’ is a finitely generated C' modulate, so by Nakayama’s lemma PR’ # R’ which is
a contradiction.

Therefore 1 ¢ PR. So C N PR is a proper ideal of C, and P C C' N PR. Therefore

as C'islocal P =CnN PR.
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Furthermore PR is maximal hence prime as R/PR is integral over C'/P (simply
mod out the polynomials) so C'//P a field implies that for any a € R/PR we have
C/Pla] is a field, so a™! € C/P[a] € R/PR, and so R/PR is also a field.

Returning to the original C', we still have C'N PR = P as if it were larger then it
would remain larger (hence equal to C') upon localization, since if x € (C' . P)N PR
thenz € C, x € PR, sox € CN PR so x € P which would be a contradiction.

And finally since localization takes prime ideals to prime ideals and vice versa, PR
remains prime in the original setup.

Take P with height at least 2. Suppose there are only fininitely many height 1 prime
ideals contained in P. Call them Py, ..., P.

Suppose PyU---UP, = P. Then by prime exclusion P = P; for some ¢ contradicting
the height of P;.

Since we haven’t done prime exclusion let’s prove it in the form we need here.
Throw away P; if necessary until P, Z | i P;. Assume t > 2. Take a;, € P, \\ P, for
i <t and take a; € P, N UJ,_, P

Then ay---a;1 € P, since P, is prime. If a; + ay---a—1 € P, then we get
ai---a;_1 € P, which is a contradiction. On the other hand if a; + a1---a;_1 €
PU---UP,_{ then a, € P, U---P,_; which is also a contradiction. Thus we must
have t = 1 and so P = P; for some 1.

Now returning to the main argument, P, U---U P, # P so there exists an a € P
with a € P, U---U P,. So P is minimal over a which contradicts the principal ideal
theorem.

If R is a field then every R-module is a vector space and every exact sequence of
vector spaces splits, so every R-module is projective.

If R is a domain and every R-module is projective. Take a # 0, a € R and consider
aR. We have the exact sequence 0 - R — R — R/aR — 0 where the map from R to
R is multiplication by a; call this map f. This exact sequence is split by assumption,
so by an old homework, f in particular is split, that is there exists a g : R — R such
that gf = 1g. So g(f(1)) = 1 so g(a) = 1. But g is a module homomorphism so
ag(l) = g(a) = 1 and so a is a unit in R.

Therefore R is a field.

Given
L dnt1 c, dn C i —
hfn—i—l In Jn-1
o, g e

and having defined H,(f,) : H,(Cs) — H,(C.) by z, + B(C,) — fnzn + B(C}) we
need to check the following:

First f,z, is a cycle: We know z, is a cycle so d,,z, = 0 so d}, fr2n = fa_1dpzn =0
so fnzn is a cycle.

Next check that the definition is independent of choices. Say z, + B,(C,) =
2l 4+ Bn(C,). So z, — 2z € B,(C,). So z, — 2z, = dy1c for some ¢ € Cpq, SO
Jnin — fnZ;L = fudyqpic = d%+1fn+lc S Bn<C:) So fnzn + Bn(ci) = fnz;z + Bn(CZ)
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Next note that H,(1¢,) is the identity by definition.
Finally H,(gf) : 20 + Bn = gn(fu(zn + Bn)) = Hu(9)(Hu(f) (20 + Br)) so Hy is a

functor.

(6) This one is a diagram chase.
First I need to label the maps:

0 0 0
0 K’ K K" 0
Y €
0 P’ P P 0
0 1%
0 A’ A A" 0
0 0 0

Take k' € K'. Suppose a(k’) = 0 so k' € kera. Then da(k’) = 0 so ny(k') = 0.
But 7 is injective so (k') = 0. ~ is injective so k' = 0 and hence kera = 0 as it

should.

Also for k' € K' (without other hypotheses), consider a(k'). da(k') = ny(k')
so efa(k’) = (da(k') = 0y(k') = 0. But € is injective so fa(k’) = 0. Therefore

a(k') € ker B.

Take k € K. Suppose (k) = 0so k € ker 5. Then ¢5(k) = 0 so (6(k) = 0. So
d(k) € ker¢ = imn. So there exists a p’ € P" with n(p’) = §(k). Also ub(p’) =
kn(p') = ko(k) = 0. But p is injective so 0(p') = 0. Therefore p’ € ker = im~y so
there exists k' € K’ with y(k') = p'. So da = ny(k') = n(p’) = §(k) and 9 is injective

so a(k’) = k. Thus k € ima.

Taking the two previous paragraphs together we have ker a = img3.

Next take k” € K”. Then €(k”) € P". But ( is onto so there exists p € P with
((p) = €(k”). Then 7r(p) = v((p) =
there exists @' € A" with u(a’) = k(p).
O(p') = d'. So ku(p') = ub(p') = k(p). Sop—n(p') € kerk = imd. Say k € K with
(k) = p—n(p'). Then eB(k) = (d(k) = ((p) —(n(p’) = ((p) = e(k”) but € is injective

so B(k) = k" and thus imfg = K.
This completes the proof.

ve(k") = 0, so k(p) € kerm = imp. So
But # is onto so there exists p’ € P’ with

(7) G is free abelian means G is free as a Z-module. Suppose G is free abelian. Then
also G is projective as a Z-module. So Ext'(G, F) = 0 for all Z-modules F. So in
particular Ext! (G, F) = 0 for F free abelian.
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Suppose Ext' (G, F) = 0 for all F free abelian. Then consider the map p : ZI¢ — G
defined by taking the generator indexed by ¢ to g itself for ¢ € G. Then 0 — kerp —
76l - G — 0 is exact. Now kerp C ZIC! but subgroups of free abelian groups are
free abelian, so ker p is free abelian. Thus by hypothesis this exact sequence splits.
So G is also a subgroup of ZI¢ and hence is also free abelian.

(8) answers will vary



