Friday September 20 Lecture Notes

1 Functors

Definition Let \mathcal{C} and \mathcal{D} be categories. A *functor* (or covariant) F is a function that assigns each $C \in \text{Obj}(\mathcal{C})$ an object $F(C) \in \text{Obj}(\mathcal{D})$ and to each $f : A \to B$ in \mathcal{C} , a morphism $F(f) : F(A) \to F(B)$ in \mathcal{D} , satisfying:

For all $A \in \text{Obj}(\mathcal{C})$, $F(1_A) = 1_{FA}$. Whenever fg is defined, F(fg) = F(f)F(g).

e.g. If \mathcal{C} is a category, then there exists an identity functor $1_{\mathcal{C}}$ s.t. $1_{\mathcal{C}}(C) = C$ for $C \in \text{Obj}(\mathcal{C})$ and for every morphism f of \mathcal{C} , $1_{\mathcal{C}}(f) = f$.

For any category from universal algebra we have "forgetful" functors.

e.g. Take $F : \operatorname{Grp} \to \operatorname{Cat}$ of *monoids* $(\cdot, 1)$. Then F(G) is a group viewed as a monoid and F(f) is a group homomorphism f viewed as a monoid homomorphism.

e.g. If ${\mathcal C}$ is any universal algebra category, then

 $F: \mathcal{C} \to \text{Sets}$

F(C) is the underlying sets of C

F(f) is a morphism

e.g. Let \mathcal{C} be a category. Take $A \in \operatorname{Obj}(C)$. Then if we define a covariant Hom functor, $\operatorname{Hom}(A, _) : \mathcal{C} \to \operatorname{Sets}$, defined by $\operatorname{Hom}(A, _)(B) = \operatorname{Hom}(A, B)$ for all $B \in \operatorname{Obj}(\mathcal{C})$ and $f : B \to C$, then $\operatorname{Hom}(A, _)(f) : \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, C)$ with $g \mapsto fg$ (we denote $\operatorname{Hom}(A, _)$ by f_*). Let us check if f_* is a functor:

Take $B \in \text{Obj}(\mathcal{C})$. Then $\text{Hom}(A, _)(1_B) = (1_B)_* : \text{Hom}(A, B) \to \text{Hom}(A, B)$ and for $g \in \text{Hom}(A, B), (1_B)_*(g) = 1_B g = g$. So $(1_B)_* = 1_{\text{Hom}(A, B)}$.

Take $B \xrightarrow{f} C \xrightarrow{g} D$. Certainly, $\operatorname{Hom}(A, B) \xrightarrow{f_*} \operatorname{Hom}(A, C) \xrightarrow{g_*} \operatorname{Hom}(A, D)$. Now take $h \in \operatorname{Hom}(A, B)$. Then $f_*(g_*(h)) = fgh = (fg)h = (fg)_*h = \operatorname{Hom}(A, _)(fg)$.

A few observations:

Proposition Functors preserve isomorphisms at the level of morphisms, i.e., if $T : \mathcal{C} \to \mathcal{D}$ and $f : A \to B$ is an isomorphism in \mathcal{C} , then T(f) is an isomorphism in \mathcal{D} .

Proof Functors preserve compositions and identities. Say $g : B \to A$ with $fg = 1_B$, and $fg = 1_B$. Then T(fg) = T(f)T(g), but $T(fg) = T(1_B) = 1_{T(B)}$. A similar argument works for $gf = 1_A$, and we are done.

Definition Two categories C and D are isomorphic (as categories) if there are functors $F : C \to D$ and $G : D \to C$ with $F(G) = 1_D$ and $G(F) = 1_C$ (where the composition of functors is just a composition on objects and a composition on maps).

e.g. Given a ring R, let R^{op} denote R but with multiplication defined backwards: $r_1 \cdot_{R^{op}} r_2 = r_2 \cdot_R r_1$ for all $r_1, r_2 \in R$ or $r_1, r_2 \in R^{op}$ (because they have the same underlying set). Then R-mod is isomorphic as a category to mod- R^{op} , the category of right modules over R^{op} .

2 Covariant Functors

Definition If \mathcal{C} and \mathcal{D} are categories, then a *covariant* functor $T : \mathcal{C} \to \mathcal{D}$ is a functor taking $C \in \text{Obj}(\mathcal{C})$ to $T(C) \in \text{Obj}(\mathcal{D})$, and $f : C \to D$ in \mathcal{C} to $T(f) : T(D) \to T(C)$ in \mathcal{D} , satisfying:

 $T(1_A) = 1_{T(A)} \text{ for all } A \in \operatorname{Obj}(\mathcal{C})$ If $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{C} , then $T(C) \xrightarrow{T(g)} T(B) \xrightarrow{T(g)} T(A)$ in \mathcal{D} , i.e., T(gf) = T(f)T(g).

e.g. Let \mathcal{C} be a category. Then the covariant Hom functor $\operatorname{Hom}(_, B) : \mathcal{C} \to \operatorname{Sets}$, with $B \in \operatorname{Obj}(\mathcal{C})$, is defined by $\operatorname{Hom}(_, B)(f) : \operatorname{Hom}(D, B) \to \operatorname{Hom}(C, B)$ with $g \mapsto gf$. We write $\operatorname{Hom}(_, B)(f) = f^*$.

3 Natural Transformations

Definition Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors. Then a *natural* transformation (or a morphism of functors) τ from F to $G, \tau : F \to G$, is a functor that assigns each $C \in \text{Obj}(\mathcal{C})$ a morphism of \mathcal{D} with $\tau_C : F(C) \to G(C)$ s.t. for all $F : C \to C'$, the following diagram commutes:

$$\begin{array}{c|c} F(C) & \xrightarrow{\tau_C} & G(C) \\ F(f) & & & \downarrow^{G(f)} \\ F(C') & \xrightarrow{\tau_{C'}} & G(C') \end{array}$$

e.g. Let $F : \text{Grp} \to \text{Sets}$ be the "forgetful" functor and let $S : \text{Grp} \to \text{Sets}$ be the "squaring" functor defined by $S(G) = G \times G$ (viewed as a set) and $S(f : G \to H) = f \times f : G \times G \to H \times H$. So the group multiplication on G is a functor $\tau_G : G \times G \to G$.

Claim τ is a natural transformation.

Take group homomorphism $f: G \to G'$ such that

This diagram says that f(x)f(y) = f(xy), i.e., f is a group homomorphism.

Definition A natural transformation $\tau : F \to F'$ is a *natural* isomorphism if each τ_A is an isomorphism. In this case we say F and F' are *naturally* isomorphic and write $F \simeq F'$. Two categories C and D are *equivalent* if there exist $F : C \to D$ and $G : D \to C$ s.t. $F(G) \simeq 1_D$ and $G(F) \simeq 1_C$.

4 Finitely Generated Modules

Definition Let R be a ring and let M be a left module over R. Let $R_a = \{ra : r \in R\}$ denote a cyclic module generated by $a \in M$. Then M is cyclic if $M = R_a$ for some $a \in M$.

e.g. Viewing R as a module over itself, $R = R \cdot 1$ is cyclic, and the cyclic submodules of R are exactly the principle ideals.

Proposition A module M is cyclic if and only if $M \cong R/L$ where L is some left ideal of R.

Proof Suppose M is cyclic, i.e., $M = R_a$. Take $f_a : R \to M$ with $r \mapsto ra$ where ker $f_a = \operatorname{Ann}_R(a) = L$. Note that f_a is onto because $M = R_a$ and so by the First Isomorphism Theorem, $M \cong R/L$. Now assume $M \cong R/L$. Take any coset r + L = r(1 + L) (conversely, any r(1 + L) = r + L is a coset of L). So R/L = R(1 + L) = R(a), and we are done.

If R is a PID, i.e., every ideal of R is principal, then every cyclic module has the form R/R_d for some $d \in R$.

Definition Let $S = \{a_i\}_{i \in I}$ be a subset of a module M. We say S spans M if every element of M can be written as as a finite sum $\sum_{i \in I} r_i a_i$. Moreover, Mis finitely generated if it is spanned by a finite set (in this case $M = \sum_{i=1}^{t} r_i a_i$).

5 Direct Sums and Cartesian Products of Modules

We know they should be: the categorical coproduct and product, respectively, but we need to show they exist. Cartesian product works for any universal algebraic category.

Definition Let $\{M_i\}_{i \in I}$ be *R*-modules and let $\prod_{i \in I} M_i$ be the set (Cartesian product) with + component-wise and $r((a_i)_{i \in I}) = (ra_i)_{i \in I}$.

This is a module since all the identities/axioms hold component-wise and so hold in $\prod_{i \in I} M_i$. If we take this with projections $\pi_i : \prod M_j \to M_i$ with $(a_j)_{j \in I} \mapsto a_i$. We need to check this satisfies universal properties of products:

where we define θ by $\theta(x) = (\beta_i(x))_{i \in I}$, and this is the unique map which works.

Version: 1.2