Friday September 20 Lecture Notes

1 Functors

Definition Let \mathcal{C} and \mathcal{D} be categories. A functor (or covariant) F is a function that assigns each $C \in \operatorname{Obj}(\mathcal{C})$ an object $F(C) \in \operatorname{Obj}(\mathcal{D})$ and to each $f: A \rightarrow B$ in \mathcal{C}, a morphism $F(f): F(A) \rightarrow F(B)$ in \mathcal{D}, satisfying:

For all $A \in \operatorname{Obj}(\mathcal{C}), F\left(1_{A}\right)=1_{F A}$.
Whenever $f g$ is defined, $F(f g)=F(f) F(g)$.
e.g. If \mathcal{C} is a category, then there exists an identity functor $1_{\mathcal{C}}$ s.t. $1_{\mathcal{C}}(C)=C$ for $C \in \operatorname{Obj}(\mathcal{C})$ and for every morphism f of $\mathcal{C}, 1_{\mathcal{C}}(f)=f$.

For any category from universal algebra we have "forgetful" functors.
e.g. Take $F: \operatorname{Grp} \rightarrow$ Cat of monoids $(\cdot, 1)$. Then $F(G)$ is a group viewed as a monoid and $F(f)$ is a group homomorphism f viewed as a monoid homomorphism.
e.g. If \mathcal{C} is any universal algebra category, then
$F: \mathcal{C} \rightarrow$ Sets
$F(C)$ is the underlying sets of \mathcal{C}
$F(f)$ is a morphism
e.g. Let \mathcal{C} be a category. Take $A \in \operatorname{Obj}(C)$. Then if we define a covariant Hom functor, $\operatorname{Hom}\left(A,,_{-}\right): \mathcal{C} \rightarrow$ Sets, defined by $\operatorname{Hom}\left(A,_{-}\right)(B)=\operatorname{Hom}(A, B)$ for all $B \in \operatorname{Obj}(\mathcal{C})$ and $f: B \rightarrow C$, then $\operatorname{Hom}\left(A,,_{-}\right)(f): \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(A, C)$ with $g \mapsto f g$ (we denote $\operatorname{Hom}\left(A,,^{\prime}\right)$ by f_{*}). Let us check if f_{*} is a functor:

Take $B \in \operatorname{Obj}(\mathcal{C})$. Then $\operatorname{Hom}\left(A,,_{-}\right)\left(1_{B}\right)=\left(1_{B}\right)_{*}: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(A, B)$ and for $g \in \operatorname{Hom}(A, B),\left(1_{B}\right)_{*}(g)=1_{B} g=g$. So $\left(1_{B}\right)_{*}=1_{\operatorname{Hom}(A, B)}$.

Take $B \xrightarrow{f} C \xrightarrow{g} D$. Certainly, $\operatorname{Hom}(A, B) \xrightarrow{f_{*}} \operatorname{Hom}(A, C) \xrightarrow{g_{*}} \operatorname{Hom}(A, D)$. Now take $h \in \operatorname{Hom}(A, B)$. Then $f_{*}\left(g_{*}(h)\right)=f g h=(f g) h=(f g)_{*} h=$ $\operatorname{Hom}\left(A,,_{-}\right)(f g)$.

A few observations:

Proposition Functors preserve isomorphisms at the level of morphisms, i.e., if $T: \mathcal{C} \rightarrow \mathcal{D}$ and $f: A \rightarrow B$ is an isomorphism in \mathcal{C}, then $T(f)$ is an isomorphism in \mathcal{D}.
Proof Functors preserve compositions and identities. Say $g: B \rightarrow A$ with $f g=1_{B}$, and $f g=1_{B}$. Then $T(f g)=T(f) T(g)$, but $T(f g)=T\left(1_{B}\right)=1_{T(B)}$. A similar argument works for $g f=1_{A}$, and we are done.

Definition Two categories \mathcal{C} and \mathcal{D} are isomorphic (as categories) if there are functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ with $F(G)=1_{\mathcal{D}}$ and $G(F)=1_{\mathcal{C}}$ (where the composition of functors is just a composition on objects and a composition on maps).
e.g. Given a ring R, let R^{op} denote R but with multiplication defined backwards: $r_{1} \cdot R^{\circ p} r_{2}=r_{2} \cdot R r_{1}$ for all $r_{1}, r_{2} \in R$ or $r_{1}, r_{2} \in R^{\circ p}$ (because they have the same underlying set). Then R-mod is isomorphic as a category to $\bmod -R^{\mathrm{op}}$, the category of right modules over $R^{o p}$.

2 Covariant Functors

Definition If \mathcal{C} and \mathcal{D} are categories, then a covariant functor $T: \mathcal{C} \rightarrow \mathcal{D}$ is a functor taking $C \in \operatorname{Obj}(\mathcal{C})$ to $T(C) \in \operatorname{Obj}(\mathcal{D})$, and $f: C \rightarrow D$ in \mathcal{C} to $T(f): T(D) \rightarrow T(C)$ in \mathcal{D}, satisfying:
$T\left(1_{A}\right)=1_{T(A)}$ for all $A \in \operatorname{Obj}(\mathcal{C})$
If $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{C}, then $T(C) \xrightarrow{T(g)} T(B) \xrightarrow{T(g)} T(A)$ in \mathcal{D}, i.e., $T(g f)=$ $T(f) T(g)$.
e.g. Let \mathcal{C} be a category. Then the covariant Hom functor $\operatorname{Hom}(-, B): \mathcal{C} \rightarrow$ Sets, with $B \in \operatorname{Obj}(\mathcal{C})$, is defined by $\operatorname{Hom}(-, B)(f): \operatorname{Hom}(D, B) \rightarrow \operatorname{Hom}(C, B)$ with $g \mapsto g f$. We write $\operatorname{Hom}(-, B)(f)=f^{*}$.

3 Natural Transformations

Definition Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. Then a natural transformation (or a morphism of functors) τ from F to $G, \tau: F \rightarrow G$, is a functor that assigns each $C \in \operatorname{Obj}(\mathcal{C})$ a morphism of \mathcal{D} with $\tau_{C}: F(C) \rightarrow G(C)$ s.t. for all $F: C \rightarrow C^{\prime}$, the following diagram commutes:

e.g. Let $F:$ Grp \rightarrow Sets be the "forgetful" functor and let $S:$ Grp \rightarrow Sets be the "squaring" functor defined by $S(G)=G \times G$ (viewed as a set) and $S(f: G \rightarrow H)=f \times f: G \times G \rightarrow H \times H$. So the group multiplication on G is a functor $\tau_{G}: G \times G \rightarrow G$.

Claim τ is a natural transformation.
Take group homomorphism $f: G \rightarrow G^{\prime}$ such that

This diagram says that $f(x) f(y)=f(x y)$, i.e., f is a group homomorphism.
Definition A natural transformation $\tau: F \rightarrow F^{\prime}$ is a natural isomorphism if each τ_{A} is an isomorphism. In this case we say F and F^{\prime} are naturally isomorphic and write $F \simeq F^{\prime}$. Two categories \mathcal{C} and \mathcal{D} are equivalent if there exist $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ s.t. $F(G) \simeq 1_{\mathcal{D}}$ and $G(F) \simeq 1_{\mathcal{C}}$.

4 Finitely Generated Modules

Definition Let R be a ring and let M be a left module over R. Let $R_{a}=$ $\{r a: r \in R\}$ denote a cyclic module generated by $a \in M$. Then M is cyclic if $M=R_{a}$ for some $a \in M$.
e.g. Viewing R as a module over itself, $R=R \cdot 1$ is cyclic, and the cyclic submodules of R are exactly the principle ideals.

Proposition A module M is cyclic if and only if $M \cong R / L$ where L is some left ideal of R.
Proof Suppose M is cyclic, i.e., $M=R_{a}$. Take $f_{a}: R \rightarrow M$ with $r \mapsto r a$ where ker $f_{a}=\operatorname{Ann}_{R}(a)=L$. Note that f_{a} is onto because $M=R_{a}$ and so by the First Isomorphism Theorem, $M \cong R / L$. Now assume $M \cong R / L$. Take any coset $r+L=r(1+L)$ (conversely, any $r(1+L)=r+L$ is a coset of L). So $R / L=R(1+L)=R(a)$, and we are done.

If R is a PID, i.e., every ideal of R is principal, then every cyclic module has the form R / R_{d} for some $d \in R$.

Definition Let $S=\left\{a_{i}\right\}_{i \in I}$ be a subset of a module M. We say S spans M if every element of M can be written as as a finite sum $\sum_{i \in I} r_{i} a_{i}$. Moreover, M is finitely generated if it is spanned by a finite set (in this case $M=\sum_{i=1}^{t} r_{i} a_{i}$).

5 Direct Sums and Cartesian Products of Modules

We know they should be: the categorical coproduct and product, respectively, but we need to show they exist. Cartesian product works for any universal algebraic category.

Definition Let $\left\{M_{i}\right\}_{i \in I}$ be R-modules and let $\prod_{i \in I} M_{i}$ be the set (Cartesian product) with + component-wise and $r\left(\left(a_{i}\right)_{i \in I}\right)=\left(r a_{i}\right)_{i \in I}$.

This is a module since all the identities/axioms hold component-wise and so hold in $\prod_{i \in I} M_{i}$. If we take this with projections $\pi_{i}: \prod M_{j} \rightarrow M_{i}$ with $\left(a_{j}\right)_{j \in I} \mapsto a_{i}$. We need to check this satisfies universal properties of products:

where we define θ by $\theta(x)=\left(\beta_{i}(x)\right)_{i \in I}$, and this is the unique map which works.
Version: 1.2

