Results on chain complex's: The notes basically follow Rotman Advanced Modern Algebra, chapter 10 on Homology.

Definition: A chain map $f_{\bullet}: A_{\bullet} \rightarrow B_{\bullet}$ is null homotopic if there are maps $s_{n}: A_{n} \rightarrow B_{n+1}$ such that $f_{n}=s_{n-1} d_{n}+d_{n+1}^{\prime} s_{n}$. In diagrams

We say that chain maps f, g are homotopic if $f-g$ is null homotopic and write $f \sim g$.

This idea comes from algebraic topology. I do not know much about the field, but the little I know suggests that this intuitively means that the maps f and g can be "continuously" deformed into the same thing.

Proposition: Let f_{\bullet}, g_{\bullet} be chain maps from $C_{\bullet} \rightarrow B \bullet$ with $f \sim g$. Then $H_{n}\left(f_{\bullet}\right)=H_{n}\left(g_{\bullet}\right)$.

Proof: To remind ourselves, we have the following diagram.

Let z_{n} be an $n-$ cycle. Note that, $d_{n} z_{n}=0$ by the definition of n cycle. So plugging into our formula gives

$$
f_{n} z_{n}-g_{n} z_{n}=d_{n+1}^{\prime} s_{n} z_{n}+s_{n-1} d_{n} z_{n}=d_{n+1}^{\prime} s_{n} z_{n} \in B_{n}\left(B_{\bullet}\right)
$$

That is, modulo $B_{n}\left(B_{\bullet}\right)$ we have $f_{n}=g_{n}$. But this is precisely the statement that $H_{n}\left(f_{\bullet}\right)=H_{n}\left(g_{\bullet}\right)$.

Prop: Let $C \bullet$ be contractible, or that the identity chain map 1_{C} is null homotopic. Then C_{\bullet} is acyclic. (exact)

Proof: We have

Let z_{n} be an n cycle. We have to show that z_{n} in the boundary n boundary. We know that $1_{n}=s_{n-1} d_{n}+d_{n+1} s_{n}$. Then as $d_{n} z_{n}=0$ we have

$$
z_{n}=s_{n-1} d_{n} z_{n}+d_{n+1} s_{n} z_{n}=d_{n+1} s_{n} z_{n} \in B_{n}\left(B_{\bullet}\right)
$$

This shows that $B_{n}\left(A_{\bullet}\right)=Z_{n}\left(A_{\bullet}\right)$ or that A_{\bullet} is acyclic.
A sequence of complex's $A_{\bullet} \xrightarrow{i_{\bullet}} B_{\bullet} \xrightarrow{p} C_{\bullet}$ is exact if for all n we have

$$
\operatorname{im} i_{n}=\operatorname{ker} p_{n}
$$

This is compact notation, note that this is really a huge diagram!

Connecting Homomorphism

Suppose that we have a short exact sequence of complexes.

$$
0_{\bullet} \rightarrow C_{\bullet}^{\prime} \xrightarrow{i_{\bullet}} C_{\bullet} \xrightarrow{p \bullet} C_{\bullet}^{\prime \prime} \rightarrow 0 \bullet
$$

Then for all n we have a homomorphism

$$
\partial_{n}: H_{n}\left(C_{\bullet}^{\prime \prime}\right) \quad \rightarrow \quad H_{n-1}\left(C_{\bullet}^{\prime}\right)
$$

given by

$$
\partial_{n}\left(z_{n}+B_{n} C^{\prime \prime}\right)=i_{n-1}^{-1} d_{n} p_{n}^{-1} z_{n}+B_{n}\left(C^{\prime}\right)
$$

(The lifting here is ambiguous, but it turns out that such a choice is unique) This is just a diagram chase. It is routine. In all honesty, I have found reading diagram chases to be pointless without doing them. In my own experience, these things become transparent when you just do them. The proof is in Rotman in any case.

Long Exact Sequence

Let

$$
0 \bullet \rightarrow C_{\bullet}^{\prime} \xrightarrow{i \bullet} C_{\bullet} \xrightarrow{p} C_{\bullet}^{\prime \prime} \rightarrow 0 \bullet
$$

be a exact sequence of complexes. Then there is a long exact sequence

$$
\rightarrow H_{n+1}\left(C_{\bullet}^{\prime \prime}\right) \xrightarrow{\partial_{n+1}} H_{n}\left(C_{\bullet}^{\prime}\right) \xrightarrow{i_{\bullet}} H_{n}\left(C_{\bullet}\right) \xrightarrow{p_{*}} H_{n}\left(C_{\bullet}^{\prime \prime}\right) \xrightarrow{\partial_{n}} H_{n-1}\left(C_{\bullet}^{\prime}\right) \rightarrow
$$

Proof:Its a diagram chase. As before the proof is in Rotman.
This gives a nice commutative diagram

Lets talk about Ext baby
We start with a definition.
Definition: Let M be an R module and let

$$
\ldots \quad \rightarrow P_{2} \rightarrow P_{1} \xrightarrow{d_{1}} \quad P_{0} \rightarrow M
$$

be a projective resolution.
The Corresponding deleted projective resolution of M is

$$
\ldots \rightarrow P_{2} \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \rightarrow 0
$$

We can always recover M from the deleted projective resolution since $M \cong$ $\operatorname{coker} d_{1}$.

Definition: Let M and N be R modules and take a deleted projective resolution of M say \mathcal{P}. Now apply the contra variant hom functor $\operatorname{Hom}_{R}(-, N)$ to reverse all the arrows for \mathcal{P}. So we get

$$
0 \rightarrow \operatorname{hom}\left(P_{0}, N\right) \rightarrow \operatorname{hom}\left(P_{1}, N\right) \rightarrow \ldots
$$

But this does not really change anything. The standard convention is to use super scripts now as the indexing is increasing.

Then we define

$$
\operatorname{Ext}_{R}^{n}(M, N)=H^{n}\left(\operatorname{hom}_{R}(\mathcal{P}, N)\right)
$$

We still need to check that this is independent of choice of projective resolution! However, it is independent of the injective resolutions and in fact and different resolutions give naturally isomorphic results.

We now run through some results about Ext.
But first, a lemma.
If

$$
A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0
$$

is an exact sequence of R modules. Then given an R module D we have that that

$$
0 \rightarrow \operatorname{hom}(A, D) \xrightarrow{i^{*}} \operatorname{hom}(B, D) \xrightarrow{p^{*}} \operatorname{hom}(C, D)
$$

is also an exact sequence. In fact the above can be strengthened to be an if and only if. The proof can be found in say Hungerfords algebra along with similar statements. In fact he has a whole section on hom and projective/injective modules which is pretty good.

Prop: What is $E x t_{R}^{0}(M, N) \cong \operatorname{hom}_{R}(M, N)$.
Pf: By definition, we know that $\operatorname{Ext}_{R}^{0}(M, N)=H^{0}\left(\operatorname{hom}_{R}(\mathcal{P}, N)\right)$
Now take a projective resolution and look at the end

$$
P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \rightarrow 0
$$

Taking homs gives

$$
0 \rightarrow \operatorname{hom}(M, N) \xrightarrow{d_{0}^{*}} \operatorname{hom}\left(P_{0}, N\right) \xrightarrow{d_{3}^{*}} \operatorname{hom}\left(P_{1}, N\right)
$$

By the above lemma we have that the sequence is exact. The sequence we are interested in is

$$
0 \rightarrow \operatorname{hom}\left(P_{0}, N\right) \xrightarrow{d_{i}^{*}} \operatorname{hom}\left(P_{1}, N\right) \rightarrow \ldots
$$

So $E x t_{R}^{0}(M, N) \cong \operatorname{ker} d_{1}^{*}$. But by the exactness of the first sequence we have that

$$
\operatorname{ker} d_{1}^{*}=\operatorname{im} d_{0}^{*} \cong \operatorname{hom}(M, N)
$$

Lemma: Horseshoe Lemma: Given a diagram with the bottom row exact and columns projective resolutions

There is a projective resolution of A and chain maps so the above diagram can be completed to a exact sequence of chain maps.

Proof: Put $P_{0}:=P_{0}^{\prime} \oplus P_{0}^{\prime \prime}$. Since sums of projective modules are projective, P_{0} is projective. Let i_{0} be the canonical injection $P_{0}^{\prime} \rightarrow P_{0}$ and p_{0} the canonical projection from P_{0} to $P_{0}^{\prime \prime}$.

So we get an exact sequence

$$
0 \rightarrow P_{0}^{\prime} \rightarrow P_{0} \rightarrow P_{0}^{\prime \prime} \rightarrow 0
$$

Now, as $P_{0}^{\prime \prime}$ is projective there is some $f: P_{0}^{\prime \prime} \rightarrow A$ with $\epsilon^{\prime \prime}=p f$. So if $\pi^{\prime}, \pi^{\prime \prime}$ are the canonical projections of P_{0} we can define $\epsilon: P_{0} \rightarrow A$ by

$$
\epsilon=i \epsilon^{\prime} \pi^{\prime}+f \pi^{\prime \prime}
$$

Now set $K_{0}^{\prime}=\operatorname{ker} \epsilon^{\prime}, K_{0}^{\prime \prime}=\operatorname{ker} \epsilon^{\prime \prime}$ and $K_{0}=\operatorname{ker} \epsilon$. So we obtain a diagram

Where the top row is given by the maps that come from the snake lemma. Now, by the 3 lemma or by the long exact sequence the whole thing must be exact.

We now show by induction how to proceed on the diagram below. Note, that we have shown that we can construct the first step up in the projective resolution of A.

Now suppose that we have the first n rows filled up. Put $K_{n}:=\operatorname{ker}\left(P_{n} \rightarrow\right.$ P_{n-1}) and define K_{n}^{\prime} and $K_{n}^{\prime \prime}$ in the obvious way. So we obtain a new 3×3 diagram

Now that since the two rows on the left and right of the diagram are exact, that the map $P_{n+1}^{\prime} \rightarrow P_{n}^{\prime}$ factors through K_{n}^{\prime} that makes everything commute, and similarly with $P_{n+1}^{\prime \prime} \rightarrow P_{n}^{\prime \prime}$ and $K_{n}^{\prime \prime}$. Define $P_{n+1}:=P_{n+1}^{\prime} \oplus P_{n+1}^{\prime \prime}$ and mimic what we did above with the original diagram to obtain a new diagram that commutes and has exact rows

What happens to exact sequences under Ext?
Suppose that we have an exact sequence of modules.

$$
0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0
$$

Then there is an exact sequence
$0 \rightarrow \operatorname{hom}(C, N) \rightarrow \operatorname{hom}(B, N) \rightarrow \operatorname{hom}(A, N) \rightarrow \operatorname{Ext}_{R}^{1}(C, N) \rightarrow \operatorname{Ext}_{R}^{1}(B, N) \rightarrow \operatorname{Ext}_{R}^{1}(A, N) \rightarrow \ldots$
Proof: Let \mathcal{P}^{\prime} and $\mathcal{P}^{\prime \prime}$ be projective resolutions of A, C respectively.
By the Horseshoe lemma, we can construct a projective resolution \mathcal{P} of A and chain maps to make the following diagram commute.

Now take the deleted resolutions

The rows still remain exact, since everything is projective we can take hom to obtain a new exact sequence of chain complex.

Now, take the long exact sequence to obtain a map
$\rightarrow \operatorname{Ext}_{R}^{n}(A, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(B, N) \rightarrow \operatorname{Ext}_{R}^{n+1}(A, N) \rightarrow \operatorname{Ext}_{R}^{n+2}(C, N) \rightarrow$
If we start at the beginning we obtain
$0 \rightarrow \operatorname{hom}(C, N) \rightarrow \operatorname{hom}(B, N) \rightarrow \operatorname{hom}(A, N) \rightarrow \operatorname{Ext}_{R}^{1}(C, N) \rightarrow \operatorname{Ext}_{R}^{1}(B, N) \rightarrow \operatorname{Ext}_{R}^{1}(A, N) \rightarrow \ldots$

