Math 800 Commutative Algebra Notes: November 22

Brad Jones

December 9, 2013

1 Split implies Ext = 0

Definition 1.1. Let C, A be R-modules and

$$\begin{split} \xi: 0 \to A \to B \to C \to 0, \\ \xi': 0 \to A \to B' \to C \to 0 \end{split}$$

be extensions of A by C. ξ and ξ' are *equivalent* if there exists $\phi: B \to B'$ such that

$$\begin{array}{ccc} 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \\ & 1_A \downarrow & \phi \downarrow & 1_C \downarrow \\ 0 \longrightarrow A \longrightarrow B' \longrightarrow C \longrightarrow 0 \end{array}$$

commutes.

Definition 1.2. Let $[\xi]$ denote the equivalence class of ξ under the above equivalence.

Let $e(C, A) = \{ [\xi] : \xi \text{ is an extension from } A \text{ to } C \}.$

Our goal is to prove we get a set bijection:

$$\psi: e(C, A) \to \operatorname{Ext}^1(C, A).$$

Given an extension

$$\xi: 0 \to A \to B \to C \to 0$$

and a projective resolution

$$\rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow C \rightarrow 0$$

we form the following diagram:

Since P_0 is projective we have

$$\begin{array}{c} P_0\\ \beta \swarrow \downarrow d_0\\ B \xrightarrow{p} C \longrightarrow 0 \end{array}$$

giving β in Figure 1.

We also have $\beta d_1 : P_1 \to B$. Since $\operatorname{im} i = \ker p$ and $p\beta d_1 = d_0 d_1 = 0$, we have $\operatorname{im} \beta d_1 \subseteq \ker p = \operatorname{im} p$. We also have

by projectivity of P_1 giving α in Figure 1. Likewise im $\alpha \subseteq \ker i = 0$ and thus Figure 1 is commutative. Notice $\alpha d_2 = 0$ so with

$$d_2^* : \operatorname{Hom}(P_2, A) \to \operatorname{Hom}(P_1, A)$$

we have $d_2^* \alpha = \alpha_2 = 0$.

Thus α is a cocycle (in the Hom groups used to build Ext).

Furthermore any two fillings are homotopic. Suppose we have:

and

Consider

We want:

$$\beta - \beta' = is_0 + s_{-1}d_0$$

$$\alpha - \alpha' = 0s_1 + s_0d_0$$

$$0 = ps_{-1} + 1_C$$

$$0 = 0 + s_1d_2.$$

Take $s_{-1} = s_1 = 0$ then we just need

$$\beta - \beta' = is_0$$
$$\alpha - \alpha' = s_0 d_0.$$

We know that $p(\beta - \beta') = 0d_0 = 0$ so given $p_0 \in P_0$, $(\beta - \beta')(p_0) \in \ker p = \operatorname{im} i$. Since *i* is injective there exists a unique $a \in A$ such that $i(a) = (\beta - \beta')(p_0)$. Let $s_0 : p_0 \mapsto a$ and then $\beta - \beta' = is_0$. Also for $p \in P_1$ $i(\alpha - \alpha')(p_1) = (\beta - \beta')d_1(p_1) = is_0d_1(p_1)$ and since *i* is injective $\alpha - \alpha' = s_0d_1$.

This property is true in general and is called the Comparison Theorem (Rotman Theorem 10.46).

Since $\alpha - \alpha' \in \operatorname{im} d_1^*$, $(d_1^* : \operatorname{Hom}(P_1, A) \to \operatorname{Hom}(P_0, A))$, $\psi := \alpha + \operatorname{im} d_1^* \in \operatorname{Ext}^1(C, A)$ is a well-defined map.

Given an extension ξ , we need to check that ψ does not depend on the choice of element in $[\xi]$. Take the diagram:

$$\begin{array}{c} \longrightarrow P_2 \to P_1 \to P_0 \to C \longrightarrow 0 \\ \downarrow & \downarrow & \uparrow \\ 0 \xrightarrow{\alpha} & A \xrightarrow{\beta} & \downarrow \\ \downarrow 1_A & \downarrow & \downarrow \\ A \xrightarrow{p'} & \downarrow \\ \downarrow & \downarrow \\ A \xrightarrow{p'} & B \xrightarrow{p} \\ C \longrightarrow 0 \end{array}$$

Consider $\alpha - \alpha''$. Take $p_1 \in P - 1$,

$$i(\alpha - \alpha'')(p_1) = i\alpha(p_1) - \phi i'\alpha(p_1) = \beta d \cdot 1(p_1) - \phi \beta' d_1(p_1) = \beta (d_1(p) - d_1(p)) = 0.$$

So $\alpha - \alpha'' = 0$ and any other α'', β' for

$$0 \to A \to B \to C \to 0$$

will be homotopic.

Define

$$\begin{array}{rccc} \psi : & e(C,A) & \to & \operatorname{Ext}^1(C,A) \\ & & [\xi] & \mapsto & \alpha + \operatorname{im} d_1^* \end{array}, \end{array}$$

which is well defined. Lemma 1.3. Let

$$\Xi: 0 \to X_1 \to X_0 \to C \to 0$$

be an extension of X_1 by C.

Given $\alpha: X_1 \to A$ consider:

$$\begin{array}{cccc} 0 \longrightarrow X_1 \xrightarrow{j} X_0 \xrightarrow{\epsilon} C \longrightarrow 0 \\ & \alpha & \downarrow & 1_C \\ & A & C \end{array}$$

Then

1. the diagram can be completed to:

$$0 \longrightarrow X_1 \xrightarrow{j} X_0 \xrightarrow{\epsilon} C \longrightarrow 0$$
$$\begin{array}{c} \alpha \downarrow & \beta \downarrow & 1_C \downarrow \\ A \xrightarrow{i} B \xrightarrow{\eta} C \end{array}$$

2. and any two bottom rows of such completions are equivalent.

Proof. 1. Let $S = \{(j(x), -\alpha(x)) \in X_0 \oplus A : x \in X_1\}$. S is a submodule of $X_0 \oplus A$. Let $B = X_0 \oplus A/s$ then

commutes by definition. B is called the pushout, it is dual to the pullback and satisfies analogous universal properties.

Define

$$\eta: \begin{array}{ccc} B & \to & C \\ (x_0, a) & \mapsto & \epsilon(x_0) \end{array}$$

then the diagram commutes by construction.

Lastly we check exactness at B. For $(x, a) \in \ker \eta$:

$$(x_0, a) \in \ker \eta \iff \epsilon(x_0) = 0$$

$$\iff x_0 \in \ker \epsilon$$

$$\iff x_0 \in \operatorname{im} j$$

$$\iff \exists x_1 \in X_1 \text{ s.t } j(x_1) = x_0$$

$$\iff \exists x_1 \in X_1 \text{ s.t } j(x_1) = x_0 \text{ and } \exists a' 1 \in S \text{ s.t. } \alpha(x_1) = a' - a$$

$$\iff \exists a' \in S \text{ s.t } (x_0, a - a') \in S$$

$$\iff \exists a' \in S \text{ s.t } (x_0, a) + S = (x_0, a') + S$$

$$\iff (x_0, a) \in \operatorname{im} i.$$

2. See Rotman Lemma 10.87 (ii).

Definition 1.4. Given Ξ and α as above, let $\alpha \Xi$ denote the equivalence class of the extension above. **Proposition 1.5.** The function $\psi : e(C, A) \to \text{Ext}^1(C, A)$ is a bijection. *Proof.* Chose a projective resolution of C:

$$P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to C \to 0$$

and a 1 cocycle $\alpha: P_1 \to A$.

Let

$$\Xi: 0 \to \frac{P_1}{\operatorname{im} d_2} \to P_0 \to C \to 0$$

Since $\alpha d_2 = 0$, $\alpha(\operatorname{im} d_2) = 0$ and so α induces

$$\alpha': P/\operatorname{im} s_2 \to A.$$

We have

So by the lemma we get:

$$\begin{array}{c} \Xi: 0 \longrightarrow {}^{P_1/\operatorname{im} d_2} \longrightarrow P_0 \longrightarrow C \longrightarrow 0 \\ & & \alpha' \downarrow & & \beta \downarrow & \downarrow \\ \alpha' \Xi: 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \end{array}$$

Define

$$\begin{aligned} \theta : \quad \operatorname{Ext}^1(C, A) &\to \quad e(C, A) \\ \alpha + \operatorname{im} d^* &\mapsto \quad \left[\alpha' \Xi \right]. \end{aligned}$$

First we check θ is well defined. Suppose $\zeta : P_1 \to A$ is another cocycle. α and ζ are homotopic so there exists $s : P_0 \to A$ such that $\zeta - \alpha = sd_1$. Then,

$$\begin{array}{ccc} P_2 & \longrightarrow & P_1 & \longrightarrow & P_0 & \longrightarrow & C & \longrightarrow & 0 \\ & & \downarrow & \alpha + s d_1 & \downarrow & \beta + i s & \downarrow & 1_C & \downarrow \\ & 0 & \longrightarrow & A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & 0 \end{array}$$

and

$$\begin{array}{c} P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow C \longrightarrow 0 \\ \downarrow \qquad \alpha \downarrow \qquad \beta \downarrow \qquad 1_C \downarrow \\ 0 \longrightarrow A \xrightarrow{} B \longrightarrow C \longrightarrow 0 \end{array}$$

have the same bottom row and so $[\alpha' \Xi] = [\zeta' \Xi]$.

Next we check that $\psi \theta = 1$. Take $\alpha + \operatorname{im} d_1^* \in \operatorname{Ext}^1(C, A)$. We have:

$$\begin{array}{ccc} 0 & \longrightarrow & P_1/\mathrm{im}\,d_2 & \longrightarrow & P_0 & \longrightarrow & C & \longrightarrow & 0 \\ & & & \alpha' & & & \beta & & 1_C & \\ 0 & \longrightarrow & A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & 0 \end{array}$$

with the bottom row in $\theta(\alpha + \operatorname{im} d_1^*)$. This diagram implies:

and thus $\alpha \in \psi \theta(\alpha + \operatorname{im} d_1^*)$.

Finally we check $\theta \psi = 1$. This is the same as above in reverse using the lemma to show that the original and new extensions are in the same class.

Theorem 1.6. Let A, C be R-modules.

Every extension of A by C splits if and only if $\text{Ext}^1(C, A) = 0$.

Proof. If every extension splits then |e(C, A)| = 1 so $\text{Ext}^1(C, A) = 0$.

If $\text{Ext}^1(C, A) = 0$ then |e(C, A)| = 1. The set of split extensions are an equivalence class of e(C, A) and so the are the only thing in e(C, A).

Note: We have more than this theorem because we saw that Ext^1 counts extensions in some sense. **Example 1.7.** We saw previously that for B, an abelian group, $\text{Ext}_{\mathbb{Z}}^1(\mathbb{Z}/n\mathbb{Z}, B) \cong B/nB$.

Take p, prime then $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z},\mathbb{Z}/p\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$. So there are p equivalence classes of extensions:

$$0 \to \mathbb{Z}/p\mathbb{Z} \to A \to \mathbb{Z}/p\mathbb{Z} \to 0.$$

Since $|A| = p^2$ is an abelian group. $A \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ and the extension splits or $A \cong (\mathbb{Z}/p^2\mathbb{Z})$. Therefore there must be p-1 ways to put $\mathbb{Z}/p\mathbb{Z}$ into $\mathbb{Z}/p^2\mathbb{Z}$ injective. This is true as they are p-1 nonzero equivalence classes modulo p.

Version 1.0.

References

[1] Joseph Rotman, Advanced Modern Algebra, Graduate Studies in Mathematics (2002), Prentice Hall.