Math 800 Commutative Algebra Notes: November 22

Brad Jones

December 9, 2013

1 Split implies Ext $=0$

Definition 1.1. Let C, A be R-modules and

$$
\begin{array}{r}
\xi: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \\
\xi^{\prime}: 0 \rightarrow A \rightarrow B^{\prime} \rightarrow C \rightarrow 0
\end{array}
$$

be extensions of A by $C . \xi$ and ξ^{\prime} are equivalent if there exists $\phi: B \rightarrow B^{\prime}$ such that

commutes.
Definition 1.2. Let $[\xi]$ denote the equivalence class of ξ under the above equivalence.
Let $e(C, A)=\{[\xi]: \xi$ is an extension from A to $C\}$.
Our goal is to prove we get a set bijection:

$$
\psi: e(C, A) \rightarrow \operatorname{Ext}^{1}(C, A)
$$

Given an extension

$$
\xi: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

and a projective resolution

$$
\rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow C \rightarrow 0
$$

we form the following diagram:

Figure 1

Since P_{0} is projective we have

$$
B \stackrel{\beta}{\stackrel{\beta}{p}} \stackrel{P_{0}}{\downarrow} d_{0}
$$

giving β in Figure 1.
We also have $\beta d_{1}: P_{1} \rightarrow B$. Since $\operatorname{im} i=\operatorname{ker} p$ and $p \beta d_{1}=d_{0} d_{1}=0$, we have $\operatorname{im} \beta d_{1} \subseteq \operatorname{ker} p=\operatorname{im} p$.
We also have

$$
A \stackrel{\alpha}{\stackrel{P_{1}}{\downarrow} \stackrel{\downarrow}{\downarrow} \beta d_{1}}
$$

by projectivity of P_{1} giving α in Figure 1. Likewise $\operatorname{im} \alpha \subseteq \operatorname{ker} i=0$ and thus Figure 1 is commutative.
Notice $\alpha d_{2}=0$ so with

$$
d_{2}^{*}: \operatorname{Hom}\left(P_{2}, A\right) \rightarrow \operatorname{Hom}\left(P_{1}, A\right)
$$

we have $d_{2}^{*} \alpha=\alpha_{2}=0$.
Thus α is a cocycle (in the Hom groups used to build Ext).
Furthermore any two fillings are homotopic. Suppose we have:

and

Consider

We want:

$$
\begin{aligned}
\beta-\beta^{\prime} & =i s_{0}+s_{-1} d_{0} \\
\alpha-\alpha^{\prime} & =0 s_{1}+s_{0} d_{0} \\
0 & =p s_{-1}+1_{C} \\
0 & =0+s_{1} d_{2} .
\end{aligned}
$$

Take $s_{-1}=s_{1}=0$ then we just need

$$
\begin{gathered}
\beta-\beta^{\prime}=i s_{0} \\
\alpha-\alpha^{\prime}=s_{0} d_{0} .
\end{gathered}
$$

We know that $p\left(\beta-\beta^{\prime}\right)=0 d_{0}=0$ so given $p_{0} \in P_{0},\left(\beta-\beta^{\prime}\right)\left(p_{0}\right) \in \operatorname{ker} p=\operatorname{im} i$. Since i is injective there exists a unique $a \in A$ such that $i(a)=\left(\beta-\beta^{\prime}\right)\left(p_{0}\right)$. Let $s_{0}: p_{0} \mapsto a$ and then $\beta-\beta^{\prime}=i s_{0}$. Also for $p \in P_{1}$ $i\left(\alpha-\alpha^{\prime}\right)\left(p_{1}\right)=\left(\beta-\beta^{\prime}\right) d_{1}\left(p_{1}\right)=i s_{0} d_{1}\left(p_{1}\right)$ and since i is injective $\alpha-\alpha^{\prime}=s_{0} d_{1}$.

This property is true in general and is called the Comparison Theorem (Rotman Theorem 10.46).
Since $\alpha-\alpha^{\prime} \in \operatorname{im} d_{1}^{*},\left(d_{1}^{*}: \operatorname{Hom}\left(P_{1}, A\right) \rightarrow \operatorname{Hom}\left(P_{0}, A\right)\right), \psi:=\alpha+\operatorname{im} d_{1}^{*} \in \operatorname{Ext}^{1}(C, A)$ is a well-defined map.
Given an extension ξ, we need to check that ψ does not depend on the choice of element in $[\xi]$. Take the diagram:

Consider $\alpha-\alpha^{\prime \prime}$. Take $p_{1} \in P-1$,

$$
\begin{aligned}
i\left(\alpha-\alpha^{\prime \prime}\right)\left(p_{1}\right) & =i \alpha\left(p_{1}\right)-\phi i^{\prime} \alpha\left(p_{1}\right) \\
& =\beta d ، 1\left(p_{1}\right)-\phi \beta^{\prime} d_{1}\left(p_{1}\right) \\
& =\beta\left(d_{1}(p)-d_{1}(p)\right) \\
& =0
\end{aligned}
$$

So $\alpha-\alpha^{\prime \prime}=0$ and any other $\alpha^{\prime \prime}, \beta^{\prime}$ for

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

will be homotopic.
Define

$$
\begin{aligned}
& \psi: \quad e(C, A) \rightarrow \\
& \operatorname{Ext}^{1}(C, A) \\
& {[\xi] } \mapsto
\end{aligned} \alpha+\operatorname{im} d_{1}^{*},
$$

which is well defined.
Lemma 1.3. Let

$$
\Xi: 0 \rightarrow X_{1} \rightarrow X_{0} \rightarrow C \rightarrow 0
$$

be an extension of X_{1} by C.
Given $\alpha: X_{1} \rightarrow A$ consider:

Then

1. the diagram can be completed to:

$$
\begin{gathered}
0 \longrightarrow X_{1} \xrightarrow{j} X_{0} \xrightarrow{\epsilon} C \longrightarrow 0 \\
\alpha \downarrow \quad \beta \downarrow{ }^{1} \downarrow \downarrow \\
A \xrightarrow[i]{\longrightarrow} C \xrightarrow[\eta]{\longrightarrow} C
\end{gathered}
$$

2. and any two bottom rows of such completions are equivalent.

Proof. 1. Let $S=\left\{(j(x),-\alpha(x)) \in X_{0} \oplus A: x \in X_{1}\right\}$. S is a submodule of $X_{0} \oplus A$. Let $B=X_{0} \oplus A / S$ then

commutes by definition. B is called the pushout, it is dual to the pullback and satisfies analogous universal properties.

Define

$$
\begin{array}{cccc}
\eta: & B & \rightarrow & C \\
& \left(x_{0}, a\right) & \mapsto & \epsilon\left(x_{0}\right),
\end{array}
$$

then the diagram commutes by construction.
Lastly we check exactness at B. For $(x, a) \in \operatorname{ker} \eta$:

$$
\begin{aligned}
\left(x_{0}, a\right) \in \operatorname{ker} \eta & \Longleftrightarrow \epsilon\left(x_{0}\right)=0 \\
& \Longleftrightarrow x_{0} \in \operatorname{ker} \epsilon \\
& \Longleftrightarrow x_{0} \in \operatorname{im} j \\
& \Longleftrightarrow \exists x_{1} \in X_{1} \text { s.t } j\left(x_{1}\right)=x_{0} \\
& \Longleftrightarrow \exists x_{1} \in X_{1} \text { s.t } j\left(x_{1}\right)=x_{0} \text { and } \exists a^{\prime} 1 \in S \text { s.t. } \alpha\left(x_{1}\right)=a^{\prime}-a \\
& \Longleftrightarrow \exists a^{\prime} \in S \text { s.t }\left(x_{0}, a-a^{\prime}\right) \in S \\
& \Longleftrightarrow \exists a^{\prime} \in S \text { s.t }\left(x_{0}, a\right)+S=\left(x_{0}, a^{\prime}\right)+S \\
& \Longleftrightarrow\left(x_{0}, a\right) \in \operatorname{im} i .
\end{aligned}
$$

2. See Rotman Lemma 10.87 (ii).

Definition 1.4. Given Ξ and α as above, let $\alpha \Xi$ denote the equivalence class of the extension above.
Proposition 1.5. The function $\psi: e(C, A) \rightarrow \operatorname{Ext}^{1}(C, A)$ is a bijection.

Proof. Chose a projective resolution of C :

$$
P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{7}} P_{0} \rightarrow C \rightarrow 0
$$

and a 1 cocycle $\alpha: P_{1} \rightarrow A$.
Let

$$
\Xi: 0 \rightarrow P_{1} / \operatorname{im} d_{2} \rightarrow P_{0} \rightarrow C \rightarrow 0
$$

Since $\alpha d_{2}=0, \alpha\left(\operatorname{im} d_{2}\right)=0$ and so α induces

$$
\alpha^{\prime}: P / \operatorname{im~s}_{2} \rightarrow A
$$

We have

So by the lemma we get:

Define

$$
\begin{aligned}
\theta: \quad \operatorname{Ext}^{1}(C, A) & \rightarrow e(C, A) \\
\alpha+\operatorname{im} d^{*} & \mapsto\left[\alpha^{\prime} \Xi\right]
\end{aligned}
$$

First we check θ is well defined. Suppose $\zeta: P_{1} \rightarrow A$ is another cocycle. α and ζ are homotopic so there exists $s: P_{0} \rightarrow A$ such that $\zeta-\alpha=s d_{1}$. Then,

$$
\begin{aligned}
& P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow C \longrightarrow 0 \\
& \downarrow \begin{array}{l}
\alpha+s d_{1} \downarrow \\
\beta+i s \\
\beta
\end{array} 1_{C} \downarrow \\
& 0 \longrightarrow C \longrightarrow 0
\end{aligned}
$$

and

have the same bottom row and so $\left[\alpha^{\prime} \Xi\right]=\left[\zeta^{\prime} \Xi\right]$.
Next we check that $\psi \theta=1$. Take $\alpha+\operatorname{im} d_{1}^{*} \in \operatorname{Ext}^{1}(C, A)$. We have:

with the bottom row in $\theta\left(\alpha+\operatorname{im} d_{1}^{*}\right)$. This diagram implies:

and thus $\alpha \in \psi \theta\left(\alpha+\operatorname{im} d_{1}^{*}\right)$.
Finally we check $\theta \psi=1$. This is the same as above in reverse using the lemma to show that the original and new extensions are in the same class.

Theorem 1.6. Let A, C be R-modules.
Every extension of A by C splits if and only if $\operatorname{Ext}^{1}(C, A)=0$.

Proof. If every extension splits then $|e(C, A)|=1$ so $\operatorname{Ext}^{1}(C, A)=0$.
If $\operatorname{Ext}^{1}(C, A)=0$ then $\mid e(C, A)=1$. The set of split extensions are an equivalence class of $e(C, A)$ and so the are the only thing in $e(C, A)$.

Note: We have more than this theorem because we saw that Ext ${ }^{1}$ counts extensions in some sense.
Example 1.7. We saw previously that for B, an abelian group, $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} / n \mathbb{Z}, B) \cong B / n B$.
Take p, prime then $\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} / p \mathbb{Z}) \cong \mathbb{Z} / p \mathbb{Z}$. So there are p equivalence classes of extensions:

$$
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow A \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0
$$

Since $|A|=p^{2}$ is an abelian group. $A \cong \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ and the extension splits or $A \cong\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$. Therefore there must be $p-1$ ways to put $\mathbb{Z} / p \mathbb{Z}$ into $\mathbb{Z} / p^{2} \mathbb{Z}$ injective. This is true as they are $p-1$ nonzero equivalence classes modulo p.

Version 1.0.

References

[1] Joseph Rotman, Advanced Modern Algebra, Graduate Studies in Mathematics (2002), Prentice Hall.

