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1 Split implies Ext = 0

Definition 1.1. Let C, A be R-modules and

ξ : 0→ A→ B → C → 0,

ξ′ : 0→ A→ B′ → C → 0

be extensions of A by C. ξ and ξ′ are equivalent if there exists φ : B → B′ such that

0 0

0 0

A B C

A B′ C

1A φ 1C

commutes.
Definition 1.2. Let [ξ] denote the equivalence class of ξ under the above equivalence.

Let e(C,A) = {[ξ] : ξ is an extension from A to C}.

Our goal is to prove we get a set bijection:

ψ : e(C,A)→ Ext1(C,A).

Given an extension
ξ : 0→ A→ B → C → 0

and a projective resolution
→ P2 → P1 → P0 → C → 0

we form the following diagram:

P2 0

0 0

P1 P0 C

A B C

d2 d1 d0

i p

α β 1C

Figure 1

Since P0 is projective we have
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P0

B C 0

β d0

p

giving β in Figure 1.

We also have βd1 : P1 → B. Since im i = ker p and pβd1 = d0d1 = 0, we have imβd1 ⊆ ker p = im p.

We also have

P1

A im i 0

α βd1

i

by projectivity of P1 giving α in Figure 1. Likewise imα ⊆ ker i = 0 and thus Figure 1 is commutative.

Notice αd2 = 0 so with
d∗2 : Hom(P2, A)→ Hom(P1, A)

we have d∗2α = α2 = 0.

Thus α is a cocycle (in the Hom groups used to build Ext).

Furthermore any two fillings are homotopic. Suppose we have:

P2 0

0 0

P1 P0 C

A B C

α β 1C

and

P2 0

0 0

P1 P0 C

A B C

α′ β′ 1C

Consider

P2 0

0 0

P1 P0 C

A B C

d2 d1 d0

i p

α−α′ β−β′ 0Cs1 s0 s-1
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We want:

β − β′ = is0 + s-1d0

α− α′ = 0s1 + s0d0

0 = ps-1 + 1C

0 = 0 + s1d2.

Take s-1 = s1 = 0 then we just need

β − β′ = is0

α− α′ = s0d0.

We know that p(β − β′) = 0d0 = 0 so given p0 ∈ P0, (β − β′)(p0) ∈ ker p = im i. Since i is injective there
exists a unique a ∈ A such that i(a) = (β − β′)(p0). Let s0 : p0 7→ a and then β − β′ = is0. Also for p ∈ P1

i(α− α′)(p1) = (β − β′)d1(p1) = is0d1(p1) and since i is injective α− α′ = s0d1.

This property is true in general and is called the Comparison Theorem (Rotman Theorem 10.46).

Since α− α′ ∈ im d∗1, (d∗1 : Hom(P1, A)→ Hom(P0, A)), ψ := α+ im d∗1 ∈ Ext1(C,A) is a well-defined map.

Given an extension ξ, we need to check that ψ does not depend on the choice of element in [ξ]. Take the
diagram:

P2 0

0 0

P1 P0 C

A B′ C

A B C 0

i′ p′

α′′ β′ 1C
α β

1A φ 1C

i p

Consider α− α′′. Take p1 ∈ P − 1,

i(α− α′′)(p1) = iα(p1)− φi′α(p1)

= βd‘1(p1)− φβ′d1(p1)

= β(d1(p)− d1(p))

= 0.

So α− α′′ = 0 and any other α′′, β′ for

0→ A→ B → C → 0

will be homotopic.

Define
ψ : e(C,A) → Ext1(C,A)

[ξ] 7→ α+ im d∗1
,

which is well defined.
Lemma 1.3. Let

Ξ : 0→ X1 → X0 → C → 0

be an extension of X1 by C.

Given α : X1 → A consider:
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0 0X1 X0 C

A C

j ε

α 1C

Then

1. the diagram can be completed to:

0 0X1 X0 C

A B C

j ε

i η

α β 1C

2. and any two bottom rows of such completions are equivalent.

Proof. 1. Let S = {(j(x),−α(x)) ∈ X0⊕A : x ∈ X1}. S is a submodule of X0⊕A. Let B = X0⊕A/S then

X1 X0

A B

j

i:a 7→(0,a)

α φ:x 7→(x,0)

commutes by definition. B is called the pushout, it is dual to the pullback and satisfies analogous
universal properties.

Define
η : B → C

(x0, a) 7→ ε(x0),

then the diagram commutes by construction.

Lastly we check exactness at B. For (x, a) ∈ ker η:

(x0, a) ∈ ker η ⇐⇒ ε(x0) = 0

⇐⇒ x0 ∈ ker ε

⇐⇒ x0 ∈ im j

⇐⇒ ∃x1 ∈ X1 s.t j(x1) = x0

⇐⇒ ∃x1 ∈ X1 s.t j(x1) = x0 and ∃a′1 ∈ S s.t. α(x1) = a′ − a
⇐⇒ ∃a′ ∈ S s.t (x0, a− a′) ∈ S
⇐⇒ ∃a′ ∈ S s.t (x0, a) + S = (x0, a

′) + S

⇐⇒ (x0, a) ∈ im i.

2. See Rotman Lemma 10.87 (ii).

Definition 1.4. Given Ξ and α as above, let αΞ denote the equivalence class of the extension above.
Proposition 1.5. The function ψ : e(C,A)→ Ext1(C,A) is a bijection.
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Proof. Chose a projective resolution of C:

P2
d2→ P1

d1→ P0 → C → 0

and a 1 cocycle α : P1 → A.

Let
Ξ : 0→ P1/im d2 → P0 → C → 0.

Since αd2 = 0, α(im d2) = 0 and so α induces

α′ : P/im s2 → A.

We have

Ξ : 0 0P1/im d2 P0 C

A C

α′

So by the lemma we get:

Ξ : 0 0

α′Ξ : 0 0

P1/im d2 P0 C

A B C

α′ β

Define
θ : Ext1(C,A) → e(C,A)

α+ im d∗ 7→ [α′Ξ] .

First we check θ is well defined. Suppose ζ : P1 → A is another cocycle. α and ζ are homotopic so there
exists s : P0 → A such that ζ − α = sd1. Then,

P2 0

0 0

P1 P0 C

A B C
i

α+sd1 β+is 1C

and

P2 0

0 0

P1 P0 C

A B C
i

α β 1C

have the same bottom row and so [α′Ξ] = [ζ ′Ξ].

Next we check that ψθ = 1. Take α+ im d∗1 ∈ Ext1(C,A). We have:
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0 0

0 0

P1/im d2 P0 C

A B C

α′ β 1C

with the bottom row in θ(α+ im d∗1). This diagram implies:

P2 0

0 0

P1 P0 C

A B C
i

α β 1C

and thus α ∈ ψθ(α+ im d∗1).

Finally we check θψ = 1. This is the same as above in reverse using the lemma to show that the original
and new extensions are in the same class.

Theorem 1.6. Let A,C be R-modules.

Every extension of A by C splits if and only if Ext1(C,A) = 0.

Proof. If every extension splits then |e(C,A)| = 1 so Ext1(C,A) = 0.

If Ext1(C,A) = 0 then |e(C,A) = 1. The set of split extensions are an equivalence class of e(C,A) and so
the are the only thing in e(C,A).

Note: We have more than this theorem because we saw that Ext1 counts extensions in some sense.
Example 1.7. We saw previously that for B, an abelian group, Ext1Z(Z/nZ, B) ∼= B/nB.

Take p, prime then Ext1Z(Z/pZ, Z/pZ) ∼= Z/pZ. So there are p equivalence classes of extensions:

0→ Z/pZ→ A→ Z/pZ→ 0.

Since |A| = p2 is an abelian group. A ∼= Z/pZ⊕ Z/pZ and the extension splits or A ∼= (Z/p2Z). Therefore there
must be p− 1 ways to put Z/pZ into Z/p2Z injective. This is true as they are p− 1 nonzero equivalence classes
modulo p.

Version 1.0.
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