Combinatorial Nullstellensatz

Brad R. Jones

December 9, 2013

Abstract

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert's Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and graph theory. This article introduces the Combinatorial Nullstellensatz, along with a proof and some of its applications. We also compare the Combinatorial Nullstellensatz to Hilbert's Nullstellensatz.

1 Introduction

The Combinatorial Nullstellensatz was first proved for fields of prime characteristic in 1996 by Alon et al. [4] and generalized to arbitrary fields and named in 1999 by Alon [2]. The Combinatorial Nullstellensatz is a pair of theorems. Theorem 1.1 resembles Hilbert's Nullstellensatz (see Theorem 3.1) and Theorem 1.2, which is also called the "'Nonvanishing Theorem" [14], is a useful tool that bounds the number of roots of a multivariate polynomial.

Theorem 1.1 (Combinatorial Nullstellensatz I [2]). Let F be a field and $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. Let S_{1}, \ldots, S_{n} be nonempty finite subsets of F.

Define $g_{i}=\prod_{s \in S_{i}}\left(\lambda_{i}-s\right)$.
If $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $s_{i} \in S_{i}$ then there exists $h_{1}, \ldots, h_{n} \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ with $\operatorname{deg}\left(h_{i}\right) \leq \operatorname{deg}(f)-\operatorname{deg}\left(g_{i}\right)$ such that:

$$
f=\sum_{i=1}^{n} h_{i} g_{i}
$$

If $f, g_{1}, \ldots, g_{n} \in R\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ for some subring, $R \subseteq F$, then we can find such $h_{i} \in R\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.
Theorem 1.2 (Combinatorial Nullstellensatz II [2]). Let F be a field and $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.
Suppose $\operatorname{deg}(f)=\sum_{i=1}^{n} t_{i}$ for some nonnegative integers, t_{i}, and the coefficient of $\prod_{i=1}^{n} \lambda_{i}^{t_{i}}$ is nonzero. If $S_{1}, \ldots, S_{n} \subseteq F$ such that $\left|S_{i}\right|>t_{i}$ then there exists $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ such that:

$$
f\left(s_{1}, \ldots, s_{n}\right) \neq 0
$$

The Combinatorial Nullstellensatz has many applications. In his 1999 article [2], Alon gave applications for sumsets, the permanent lemma, extremal graph theory and list coloring of graphs. Later applications were done for sumsets [3, 16], sequences [14, 17], probabilistically checkable proofs [7], graph labellings [12] and zero flow in graphs [1].

In this paper we start with an outline of the original proof of the Combinatorial Nullstellensatz, next we give a comparison to Hilbert's Nullstellensatz and finally we investigate three examples of using the Combinatorial Nullstellensatz.

2 Proof of the Combinatorial Nullstellensatz

We shall present the original proof by Alon [2]. To prove the two theorems of the Combinatorial Nullstellensatz we need the following lemma. This lemma is powerful by itself and has been utilized in [9].

Lemma 2.1. Let F be a field and $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.
Suppose the degree of λ_{i} in f is less than t_{i} for all $1 \leq i \leq n$ and $S_{i} \subseteq F$ are such that $\left|S_{i}\right| \geq t_{i+1}+1$.
If $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ then $f=0$.
Proof. We shall proceed by induction on n.
If $n=1$ then the statement is merely the fundamental theorem of algebra.
If $n>1$ then for $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ and $S_{i} \subseteq F$, write f as

$$
f=\sum_{i=0}^{t_{n}} f_{i}\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \lambda_{i}
$$

where $f_{i} \in F\left[\lambda_{1}, \ldots, \lambda_{n-1}\right]$ such that λ_{j} in each f_{i} has degree at most t_{j}.
For $s_{1} \in S_{1}, \ldots, s_{n-1} \in S_{n-1}$, the polynomial, $Q=f\left(s_{1}, \ldots, s_{n-1}, \lambda_{n}\right) \in F\left[\lambda_{n}\right]$, equals zero for all $\lambda_{n}=s_{n} \in$ S_{n} and thus $Q=0$. Therefore $f_{i}\left(s_{1}, \ldots, s_{n-1}\right)=0$ for all $s_{1} \in S_{1}, \ldots, s_{n-1} \in S_{n-1}$. Thus by the inductive hypothesis, $f_{i}=0$ for all i and so $f=0$.

Now we shall prove the Combinatorial Nullstellensatz.
Proof of Combinatorial Nullstellensatz I. Suppose $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ and $S_{1}, \ldots, S_{n} \subseteq F$ are as in the hypothesis of Theorem 1.1.
Let $t_{i}=\left|S_{i}\right|-1$ and

$$
g_{i}=\prod_{s_{i} \in S_{i}}\left(\lambda_{i}-s_{i}\right)=\lambda_{i}^{t_{i}+1}-\sum_{j=0}^{t_{i}} g_{i j} \lambda_{i}^{j}
$$

for each i.
For $p \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ define $\left[\lambda_{i}^{j}\right] p$ be the coefficient of λ_{i}^{j} as a polynomial in $F\left[\lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_{n}\right]$. Consider the recurrence relation:

$$
\begin{align*}
f_{1,1} & =f & \\
f_{i+1,1} & =f_{i, \operatorname{deg}_{i}(f)+1} & \forall i \geq 1 \\
f_{i, j+1} & =f_{i, j}-\left(\sum_{t=0}^{\operatorname{deg}_{i}\left(f_{i, j}\right)-t_{i}}\left(\lambda_{i}^{t}\right)\left[\lambda_{i}^{t+t_{i}}\right] f_{i, j}\right) g_{i} & \forall i, j \geq 1 \tag{2.1}
\end{align*}
$$

where $\operatorname{deg}_{i}(y)$ is the degree of λ_{i} in $y \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. Let

$$
h_{i}=\sum_{j=1}^{\operatorname{deg}_{i}(f)+1}\left(\sum_{t=0}^{\operatorname{deg}_{i}\left(f_{i, j}\right)-t_{i}}\left(\left[\lambda_{i}^{t+t_{i}}\right] f_{i, j}\right) \lambda_{i}^{t}\right)
$$

and

$$
\bar{f}=f_{n, \operatorname{deg}_{i}(f)+1}
$$

Note that h has degree at most $\operatorname{deg} f-\operatorname{deg} g_{i}$ and the coefficients of h are in the smallest ring containing the coefficients of g_{i} and f. Also $f-\sum_{i=1}^{n} g_{i} h_{i}=\bar{f}$. Since for all $i, j, f_{i, j}\left(s_{1}, \ldots, s_{n}\right)=0$ for all $s_{i} \in S_{i}$ it follows that $\bar{f}\left(s_{1}, \ldots, s_{n}\right)=0$ for all $s_{i} \in S_{i}$.
For each $i, j \geq 1, \operatorname{deg}_{i}\left(f_{i, j+1}\right)<\max \left\{t_{i}+1, \operatorname{deg}_{i}\left(f_{i, j}\right)\right\}$ and thus $\operatorname{deg}_{i}\left(f_{i, \operatorname{deg}_{i} f+1}\right) \leq \max \left\{t_{i}, \operatorname{deg}_{i}(f)-\right.$ $\left.\operatorname{deg}_{i}(f)+1\right\}=t_{i}$. Therefore $\operatorname{deg}_{i}(\bar{f}) \leq t_{i}$ for all i.
So by Lemma 2.1, $\bar{f}=0$ and thus $f=\sum_{i=1}^{n} h_{i} g_{i}$.
A short proof of Theorem 1.2 was given by Michalek [13]; however we shall give the original proof, since we have the tools to do so.

Proof of Combinatorial Nullstellensatz II. Suppose $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right], t_{1}, \ldots, t_{n}$ and $S_{1}, \ldots, S_{n} \subseteq F$ are as in the hypothesis of Theorem 1.1.

We may assume that $\left|S_{i}\right|=t_{i}+1$.
Suppose for all $s_{i} \in S, f\left(s_{1}, \ldots, s_{n}\right)=0$ and let $g_{i}=\sum_{s_{i} \in S_{i}}\left(\lambda_{i}-s_{i}\right)$. By Theorem 1.1 there exist $h_{i} \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ with $\operatorname{deg}\left(h_{i}\right) \leq \sum_{j=1}^{n} t_{j}-\operatorname{deg} g_{i}$ and $f=\sum_{i=1}^{n} h_{i} g_{i}$.

However every monomial of maximum degree in $h_{j} g_{j}=h_{j} \prod_{s_{i} \in S}\left(x_{i}-s_{i}\right)$ is divisible by $\lambda_{j}^{t_{j}+1}$. Therefore the monomials of $\operatorname{deg}(f)$ in $f=\sum_{i=1}^{n} h_{i} g_{i}$ are divisible by $\lambda_{j}^{t_{j}+1}$ for some j. Therefore the coefficient of $\prod_{i=1}^{n} \lambda_{i}^{t_{i}}$ in f is zero, but this was assumed false in the hypothesis of the theorem giving a contradiction.

3 Comparison to Hilbert's Nullstellensatz

The Combinatorial Nullstellensatz gets its name from the similar Hilbert's Nullstellensatz.
Theorem 3.1 (Hilbert's Nullstellensatz [11]). Let F be an algebraically closed field, $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ and I be an ideal of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.
Define

$$
S=\left\{\left(s_{1}, \ldots, s_{n}\right) \in F^{n}: g\left(s_{1}, \ldots, s_{n}\right)=0 \forall g \in I\right\}
$$

If $f\left(s_{1}, \ldots, s_{m}\right)=0$ for all $\left(s_{1}, \ldots, s_{n}\right) \in S$ then

$$
f^{k} \in I
$$

for some $k \in \mathbb{N}^{+}$.
The importance of Hilbert's Nullstellensatz is that it implies the following foundational theorem in Algebraic Geometry.
Theorem 3.2 ([11]). Let F be an algebraically closed field. There is a one-to-one correspondence between the collection of radical ideals of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ and the collection of algebraic subsets of F^{n}.

The algebraic subsets of F^{n} are the subsets of the form $\left\{\left(s_{1}, \ldots, s_{n}\right) \in F^{n}: f\left(s_{1}, \ldots, s_{n}\right)=0 \forall f \in I\right\}$ for some subset, $I \subseteq F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.

We include the proof to show the use of Hilbert's Nullstellensatz.
Proof. Take

$$
i: S \mapsto\left\{f \in: f\left(s_{1}, \ldots, s_{n}\right)=0 \forall\left(s_{1}, \ldots, s_{n}\right) \in S\right\}
$$

and

$$
\sigma: I \mapsto\left\{\left(s_{1}, \ldots, s_{n}\right) \in F^{n}: f\left(s_{1}, \ldots, s_{n}\right)=0 \forall f \in I\right\}
$$

i maps into radical ideals because if $i(S)$ is an ideal for all sets S and $f^{k}\left(s_{1}, \ldots, s_{n}\right)=0$ then $f\left(s_{1}, \ldots, s_{n}\right)=0$. σ maps into algebra sets by definition.

For S an algebraic subset of F^{n}, if $\left(s_{1}, \ldots, s_{n}\right) \in S$ then $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $f \in i(S)$ and thus $\left(s_{1}, \ldots, s_{n}\right) \in \sigma(i(S))$. If $\left(s_{1}, \ldots, s_{n}\right) \in \sigma(i(S))$ then $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $f \in i(S)$ and thus $\left(s_{1}, \ldots, s_{n}\right) \in$ S. So σi fixes algebraic subsets of F^{n}.

For I a radical ideal of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$, if $f \in I$ then $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $\left(s_{1}, \ldots, s_{n}\right) \in \sigma(I)$ and thus $f \in i \sigma(I)$. If $f \in i \sigma(I)$ then $f\left(s_{1}, \ldots, s_{n}\right)=0$ for all $\left(s_{1}, \ldots, s_{n}\right) \in \sigma(I)$ and by Hilbert's Nullstellensatz $f^{k} \in I$. Because I is radical $f \in I$. So $i \sigma$ fixes radical ideals. This result is sometimes called "Hilbert's Nullstellensatz" instead of Theorem 3.1 [6, 10, 15].
Therefore σ is a desired one-to-one correspondence.
If we take $I=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ in Hilbert's Nullstellensatz for some $m \in \mathbb{N}$ and $g_{1}, \ldots, g_{m} \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ then for $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ satisfying the hypothesis of Hilbert's Nullstellensatz we get that $f^{k} \in\left\langle g_{1}, \ldots, g_{m}\right\rangle$ for some $k \in \mathbb{N}^{+}$. In other words

$$
f^{k}=\sum_{i=1}^{m} h_{i} g_{i}
$$

for some $h_{i} \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. This result looks very similar to the result of the Combinatorial Nullstellensatz I. If I is radical then we can get $f=\sum_{i=1}^{m} h_{i} g_{i}$.

The power of the Combinatorial Nullstellensatz is that it includes a bound on the degree of the h_{i} and the base field does not have to be algebraic closed. Since Hilbert's Nullstellensatz is merely a lemma for Theorem 3.2 , those parts of the Nullstellensatz are unnecessary

The Combinatorial Nullstellensatz puts a restriction on the type of ideal allowed. We can see the Combinatorial Nullstellensatz as determining when $f \in\left\langle g_{1}, \ldots, g_{n}\right\rangle$, for specific types of g_{i}. Hilbert's Nullstellensatz puts no restriction on I. This is again because it is a lemma for Theorem 3.2 which at least needs the Nullstellensatz to work on radical ideals.

4 Applications of the Combinatorial Nullstellensatz

Now we shall look at how the Combinatorial Nullstellensatz can be used to solve various problems. We will investigate three examples: sum sets, list coloring and zero-sum flows in graphs. The first two examples are from Alon [2] and the latter example is due to Akbari et al. [1].

4.1 Sumsets

Given two subsets, A, B, of a ring R, their sum is the set, $A+B=\{a+b: a \in A, b \in B\}$. We may call $A+B$ a sumset.

The following theorem of sumsets was proved in 1813 by Cauchy using induction and a combinatorial argument [2]. We shall instead use the Combinatorial Nullstellensatz in our proof, which comes from Alon [2].
Theorem 4.1. If p is prime and A, B are non empty subsets of \mathbb{Z}_{p} then

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof. If $|A|+|B|>p$ then for every $g \in \mathbb{Z}_{p}, A \cap(g-B) \neq \emptyset$ and so $A+B=\mathbb{Z}_{p}$.
Assume $|A|+|B| \leq p$ and $|A+B| \leq|A|+|B|-2$.
Let $C \subseteq Z$ be such that $A+B \subset C$ and $|C|=|A|+|B|-2$ and define $f(x, y)=\prod_{c \in C}(x+y-c)$. Note that for all $a \in A, b \in B: f(a, b)=\prod_{c \in C}(a+b-c)=0$.

Since $x^{|A|-1} y|B|-1$ has the coefficient $\binom{|A|+|B|-2}{|A|-1}$, which is nonzero, and $\operatorname{deg}(f)=|C|=|A|+|B|-2$, if we take $t_{1}=|A|-1, t_{2}=|B|-1, S_{1}=A$ and $S_{2}=B$ then by the Combinatorial Nullstellensatz II there exists and $a \in A$ and $b \in B$ such that $f(a, b) \neq 0$, a contradiction.

4.2 List coloring

A graph is a pair, $G=(V, E)$, where V is a finite set and E is a set whose elements are sets of two elements of V. Elements of V are called vertices and elements of E are called edges.
A proper coloring of a graph, $G=(V, E)$, is function, $c: V \rightarrow \mathbb{Z}$ such that for all $\{v, w\} \in E, c(v) \neq c(w)$. A graph, $G=(V, E)$, is k-colorable for $k \in \mathbb{N}$ if there exists a proper coloring, c, such that $|c(V)| \leq k$.
Let $f: V \rightarrow \mathbb{N}$. We say that $G=(V, E)$ is f-choosable if for all $S: V \rightarrow \mathcal{P}(\mathbb{Z})$ with $|S(x)|=f(v)$ there exists a proper coloring, c, such that for all $v \in V, c(v) \in S(v)$. A graph is k-choosable (or k-list colorable) for $k \in \mathbb{N}$ if G is κ-choosable, where $\kappa(v)=k$ for all $v \in V$.

Clearly a graph is k-colorable if it is k-choosable. An important question in graph theory asks if the converse is true [8].
We shall present a result about f-choosablility, first proved in 1992 by Alon and Tarsi [5]. First we give a few more definitions.

An orientation of a graph $G=(V, E)$ is a set, $D \subseteq V \times V$, such that $|D|=|E|$ and for each $(v, w) \in D$, $\{v, w\} \in E$. We call the outdegree in D of a vertex, $v \in V$, is $|\{(v, w) \in D\}|$. If $V=\{1, \ldots, n\}$ then we say the parity of D is the parity of $|\{(i, j) \in D: i<j\}|$. We define $\mathrm{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)$ to be the number of even orientations of G with outdegrees, d_{1}, \ldots, d_{n}, of vertices $1, \ldots, n$ respectively and we define $\mathrm{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)$ to be the number of odd orientations of G with outdegrees, d_{1}, \ldots, d_{n}, of vertices $1, \ldots, n$ respectively.

Theorem 4.2. Let $G=(\{1,2, \ldots, n\}, E)$.
Let $f:\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ such that for some $\sum_{i=1}^{n} t_{i}=|E|, f(i)=t_{i}+1$.
If $\mathrm{DE}_{G}\left(t_{1}, \ldots, t_{n}\right) \neq \mathrm{DO}_{G}\left(t_{1}, \ldots, t_{n}\right)$ then G is f-choosable.
Proof. Let G and f be as in the hypothesis of the theorem.
If there are no orientations of G with the correct outdegrees then the theorem is vacuously true.
For $1 \leq i \leq n$, suppose $S_{i} \subseteq \mathbb{Z}$ is such that $\left|S_{i}\right|=t_{i}+1$.
Define $g_{G} \in \mathbb{Q}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$,

$$
g_{G}:=\prod_{\{i, j\} \in E: i<j}\left(\lambda_{i}-\lambda_{j}\right) .
$$

Clearly $c: V \rightarrow \mathbb{Z}$ is a proper coloring of D if and only if $g(c(1), \ldots, c(n)) \neq 0$.
The degree of g_{G} is $|E|=\sum_{i=1}^{n} t_{i}$, since g is the product of $|E|$ linear polynomials.
Claim:

$$
g_{G}=\sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\mathrm{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)-\mathrm{DO}_{G}\left(d_{1}, \ldots, d_{n}\right)\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}} .
$$

We will prove the claim by induction on $|E|$.
If $|E|=0$ then $\mathrm{DE}_{G}(0, \ldots, 0)=1, \mathrm{DO}_{G}(0, \ldots, 0)=0$ and $\mathrm{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)=\mathrm{DO}_{G}\left(d_{1}, \ldots, d_{n}\right)=0$ for all $d_{1}, \ldots, d_{n} \in \mathbb{N}$ not all zero. Therefore $g_{G}=1=\sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\operatorname{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)-\mathrm{DO}_{G}\left(d_{1}, \ldots, d_{n}\right)\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}}$.
Assume $|E| \geq 1$ and the claim is true for all graphs with $|E|-1$ edges. Let $\{k, j\} \in E$ with $k<j$ and consider $G^{\prime}=(V, E \backslash\{k, j\})$. This gives that $g_{G}=\left(\lambda_{k}-\lambda_{j}\right) g_{G^{\prime}}$. We know that

$$
\mathrm{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)=\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{k-1}, d_{k}-1, d_{k+1}, \ldots, d_{n}\right)+\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right)
$$

because D is an even orientation of G containing (k, j) if and only if $D \backslash\{(k, j)\}$ is an even orientation of G^{\prime} and D is an even orientation of G containing (j, k) if and only if $D \backslash\{(j, k)\}$ is an odd orientation of G^{\prime}. Similarly,

$$
\mathrm{DO}_{G}\left(d_{1}, \ldots, d_{n}\right)=\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{k-1}, d_{k}-1, d_{k+1}, \ldots, d_{n}\right)+\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
$$

By the inductive hypothesis

$$
g_{G^{\prime}}=\sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{n}\right)-\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{n}\right)\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}}
$$

and therefore

$$
\begin{aligned}
g_{G}= & \left(\lambda_{k}-\lambda_{j}\right) \sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{n}\right)-\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{n}\right)\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}} \\
= & \sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{n}\right)-\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{n}\right)\right)\left(\lambda_{k}-\lambda_{j}\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}} \\
= & \sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{k-1}, d_{k}-1, d_{k+1}, \ldots, d_{n}\right)-\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{k-1}, d_{k}-1, d_{k+1}, \ldots, d_{n}\right)-\right. \\
& \left.\mathrm{DE}_{G^{\prime}}\left(d_{1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right)+\mathrm{DO}_{G^{\prime}}\left(d_{1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right)\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}} \\
= & \sum_{d_{1}, \ldots, d_{n} \geq 0}\left(\mathrm{DE}_{G}\left(d_{1}, \ldots, d_{n}\right)-\mathrm{DO}_{G}\left(d_{1}, \ldots, d_{n}\right)\right) \prod_{i=1}^{n} \lambda_{i}^{d_{i}}
\end{aligned}
$$

proving the claim.
Since $\mathrm{DE}_{G}\left(t_{1}, \ldots, t_{n}\right)-\mathrm{DO}_{G}\left(t_{1}, \ldots, t_{n}\right) \neq 0$, the coefficient of $\prod_{i=1}^{n} \lambda_{i}^{t_{i}}$ is nonzero. So by the Combinatorial Nullstellensatz II, we have $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ such that $g\left(s_{1}, \ldots, s_{n}\right) \neq 0$. Taking, $c(i)=s_{i}$ for all $1 \leq i \leq n$ gives a desired proper coloring.

4.3 Zero-sum flows in graphs

For a graph, $G=\left(V,\left\{e_{1}, \ldots, e_{n}\right\}\right)$, a zero p-flow of G is a map $f: E \rightarrow \mathbb{Z}_{p} \backslash\{0\}$ such that for all $v \in V$

$$
\sum_{e \in E: v \in e} f(e)=0
$$

The following result was shown by Akbari et al. [1].
Theorem 4.3. Let $G=\left(V,\left\{e_{1}, \ldots, e_{n}\right\}\right)$ be a graph and

$$
g=\prod_{v \in V}\left(\left(\sum_{e_{i} \in E: v \in e_{i}} \lambda_{i}\right)^{p-1}-1\right) \in \mathbb{Z}_{p}\left[\lambda_{1}, \ldots, \lambda_{n}\right]
$$

then G has a zero p-flow if and only if $g \notin\left\langle\lambda_{1}^{p-1}-1, \ldots, \lambda_{n}^{p-1}-1\right\rangle$.
Proof. Let G and g be as in the hypothesis of the theorem.
For every $s \in \mathbb{Z}_{p} \backslash\{0\}, s^{p-1}=1$. So $f: E \rightarrow \mathbb{Z}_{p}$ is a zero \mathbb{Z}_{p}-flow of G if and only if $g\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right) \neq 0$.
Take $\bar{g} \in \mathbb{Z}_{p}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ to be a polynomial of least degree such that $\bar{g} \in g+\left\langle\lambda_{1}^{p-1}-1, \ldots, \lambda_{n}^{p-1}-1\right\rangle$. Then $\bar{g}=g+h$ for some $h \in\left\langle\lambda_{1}^{p-1}-1, \ldots, \lambda_{n}^{p-1}-1\right\rangle$. Since $h=\sum_{i=0}^{n} h_{i}\left(\lambda_{i}^{p-1}-1\right)$ for some $h_{i} \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$, $h\left(s_{1}, \ldots, s_{n}\right)=0$ for all $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{p} \backslash\{0\}$. Therefore for all $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{p} \backslash\{0\}, \bar{g}\left(s_{1}, \ldots, s_{n}\right)=$ $g\left(s_{1}, \ldots, s_{n}\right)$.
If $\bar{g} \neq 0$ then there exists a monomial $\prod_{i=1}^{n} \lambda_{i}^{t_{i}}$ with nonzero coefficient in g for some $t_{i} \in \mathbb{N}$ such that $\sum_{i=1}^{n} t_{i}=\operatorname{deg}(\bar{g})$. Since $\operatorname{deg}_{i}(\bar{g}) \leq p-2$ for all $1 \leq i \leq n, t_{i} \leq p-2$. Since $\left|\mathbb{Z}_{p} \backslash\{0\}\right|=p>p-2$, by the Combinatorial Nullstellensatz II there exists $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{p} \backslash\{0\}$ such that $g\left(s_{1}, \ldots, s_{n}\right)=\bar{g}\left(s_{1}, \ldots, s_{n}\right) \neq 0$. Setting $f\left(e_{i}\right)=s_{i}$ for all $1 \leq i \leq n$, we can see that G has a zero p-flow.

If $\bar{g}=0$ then $\bar{g}=g$ is always zero and thus G has no zero p-flow.
Therefore G has a zero p-flow if and only if $\bar{g} \neq 0$ or equivalently $g \notin\left\langle\lambda_{1}^{p-1}-1, \ldots, \lambda_{n}^{p-1}-1\right\rangle$.

References

[1] S. Akbari, A. Daemi, O. Hatami, A. Javanmard, A. Mehrabian, Zero-Sum Flows in Regular Graphs, Graphs and Combinatorics 26 (2010), 603-615.
[2] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7-29.
[3] N. Alon, Additive latin transversals, Israel Journal of Mathematics 117 (2000), 125-130.
[4] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and restricted sums of congruence classes, Journal of Number Theory 56 (1996), 404-417.
[5] N. Alon, M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), 125-134.
[6] M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra (1969), Addison-Wesley.
[7] E. Ben-Sasson, M. Sudan, Short PCPs with Polylog Query Complexity, SIAM J. Comput. 38(2) (2008), 551-607.
[8] B. Bollobás, A.J. Harris, List colorings of graphs, Graphs and Combinatorics, 1 (1985), 115-127.
[9] B. Green, T. Tao, The distribution of polynomials over finite fields, with applications to the Gowers norms (2007), arXiv:0711.3191v1.
[10] David Eisenbud, Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150 (1995), Springer-Verlag.
[11] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52 (1977), Springer-Verlag.
[12] D. Hefetz, Anti-Magic Graphs via the Combinatorial NullStellenSatz, Journal of Graph Theory 50(4) (2005).
[13] M. Michalek, A short proof of Combinatorial Nullstellensatz (2009), arXiv:0904.4573v1.
[14] L. Ronyai, On a conjecture of Kemnitz, Combinatorica 20(4) (2000), 569-573.
[15] L.H. Rowen, Graduate Algebra: Commutative View, Graduate Studies in Mathematics 73 (2006), American Mathematical Society.
[16] Z.W. Sun, Unification of zero-sum problems, subset sums and covers of \mathbb{Z}, Electronic Research Announcements of the American Mathematical Society 9 (2003), 51-60.
[17] T. Tao, T. Ziegler, The primes contain arbitrarily long polynomial progressions, Acta. Math. 201 (2008), 213-305.

