
We are talking about localization. We will be mostly concerned with the case
of a commutative ring, but we will try to use as much generality as possible.

We �rst de�ne what a monoid is. A monoid is a set A with a operation
A × A → A that is associative, and has a identity element. Now given a ring
R 6= 0 and and a sub monoid S of R contained in Cent(R) (This is a fancy way
of saying that S is closed under multiplication and that 1 ∈ S. In the literature
for commutative rings this is often referred to as a multiplicative set) that does
not contain 0 we can de�ne the localization of R at S is a a pair (ι, S−1R) where
ι :→ S−1R is a algebra homomorphism and the following universal property. If
ϕ : R → T is an algebra morphism such that ϕ(s) is invertible for all s ∈ S
then there is a unique morphism θ : S−1R→ T such that the following diagram
commutes.

R
ι //

ϕ

��

S−1R

∃!θ
||

T

Now, as usual if we de�ne an object via universal property, we have to show
that such a object exists.

Let S−1R be the set {(r, s} : r ∈ R, s ∈ S} equipped by the relation (r1, s1) ∼
(r2, s2) ⇐⇒ ∃s3 ∈ S s.t. s3r1s2 = s3r2s1 or that s3(r1s2 − r2s1) = 0.

It is a fact that the relation ∼ de�ned above is a equivalence relation. This
is proven in rowen page 226 Theorem 8.2. Since it is in the book I will omit the
proof. From now on we will use the notation that (r, s) = r

s .
Now de�ne operations on S−1R as follows.

r1
s1

+
r2
s2

=
s2r1 + r2s1

s1s2
r1
s1
· r2
s2

=
r1r2
s1s2

Again it is true that these operations are well de�ned. The proof of such
things is standard and omitted.

Now de�ne ι(r) = r
1 . Then, ι is a ring homomorphism. Indeed, let

ι(r1 + r2) =
r1 + r2

1
=
r1
1

+
r2
1

= ι(r1) + ι(r2)

because of how we de�ned addition. Similarly we know that

ι(r1r2) =
r1r2

1
= ι(r1)ι(r2)

because of how we de�ned multiplication. Finally, it is clear that 1
1 is the

identity of S−1R so ι(1) is the identity. If we restrict ι to the center of R we see
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that

ι |Cent(R) (R) ⊆ Cent(S−1R)

since given
r1
s1

and r ∈ Cent(R) we have

ι(r)
r1
s1

=
rr1
s1

=
r1r

s1
=
r1
s1
ι(r)

So this makes S−1R a Cent(R) algebra and in fact a Cent(R) algebra mor-
phism. Finally, one can compute ker ι. We know that r

1 = 0
1 ⇐⇒ ∃s ∈ S such

that sr = 0. So

ker ι = {r ∈ R : ∃s ∈ S s.t.sr = 0}

OK, so we have de�ned what localization, but what does it mean. In one
sense it is a generalization of the fraction �eld. One can see this as follows. If
R is a commutative domain then take S = {r ∈ R : r 6= 0}. Then S−1R is the
�eld of fractions of R. A few notes.

We have set it up so that 0 /∈ S. This means that if s1, s2 ∈ S then
s1s2 6= 0 because S is multiplicatively closed. A natural question at this point
is as follows. When is ι an injection? That is, when can we embed R into the
localization, This is easy. Namely if s ∈ S and s is a zero divisor. That is, there
is some r ∈ R such that rs = sr = 0 . Then we know that ι(r) = 0 by our
earlier work. That is, ι is an embedding i� S contains no zero divisors. So in
fact we obtain the following.

Cor: If R is a integral domain then S−1R is a integral domain and ι is an
embedding.

Proof: For the �rst claim,

r1
s1

r2
s2

= 0 ⇐⇒ ∃s ∈ S s.t.sr1r2 = 0

That is we have (sr1)r2 = 0. Since R is a integral domain we know that
r2 = 0 or sr1 = 0. But if r2 6= 0 then r1s = 0 and since s 6= 0 this means r1 = 0

so
r1
s1

= 0
s1

= 0 or
r2
s2

= 0
s2

= 0. So S−1R is a domain. Furthermore, S cannot

contain any zero divisors so by our earlier remarks ι is a injection.�

From now on I will assume all rings are commutative.

Continuing on, we can see that the largest (with respect to inclusion) mul-
tiplicative set such ι is an injection is the set of all non-zero divisors. One
might also wonder how di�erent multiplcative sets behave under localization.
For those interested, there are some results in Atiyah Mcdonalds introduction
to commutative algebra. For example the following holds. (The proofs are not
so bad to work out. But I will omit them)
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Lemma: S, T are multiplicative subsets of R. Let U be the image of T in
S−1R. Then U−1(S−1R) ∼= (ST )−1R

Lemma: Let Σ be the set of all multiplicative subsets of R. Then Σ has
maximal elements and S is a maximal element of Σ ⇐⇒ R − S is a minimal
prime ideal.

One might also wonder if S ⊆ T are multiplicative sets, when is S−1R ∼=
T−1R. This leads to the notion of a saturated multiplicative set. Again such
questions are addressed in the exercises of Atiyah-Mcdonald as above.

One of the reasons we think that localization is interesting is because the
ideal theory of S−1R is a simpli�ed version of the ideal theory of R. Given a
set A ⊆ R and S a multiplicative set we de�ne

S−1A := {a
s

: s ∈ S, a ∈ A}

Now let I be an ideal of R.
Lemma: S−1I is a ideal of S−1R.

Proof: If i1, i2 ∈ I and s1, s2 ∈ S then
i1
s1

+
i2
s2

=
i1s2 + i2s1

s1s2
∈ S−1I as I is

an ideal. Similarly,
r

s

i1
s1

=
ri1
ss1
∈ S−1I for all

r

s
∈ S−1I. �

Lemma:
1

1
∈ S−1I ⇐⇒ S ∩ I 6= ∅.

Proof: 1
1 ∈ S

−1I means that there is some i ∈ I and s1 ∈ S with i
s1

= 1
1 .

That is, there is some s2 ∈ S with s2i = s1. Since s2i ∈ I we get that s1 ∈ I as
desired. Conversely if s ∈ I ∩ S then

1

s
· s

1
=

1

1
∈ S−1I

�
We now come to one of the main results.
Theorem:
(i) If I is a ideal of R and S ∩R = ∅ then S−1I is a proper ideal of S−1R
(ii)Let J be a proper ideal of S−1R. Then J = S−1I for a suitable ideal I

of R . In fact I = {r ∈ R : r1 ∈ I}
(iii) Let L(S−1R) be the ideals of S−1R and L(R) the ideals of R. De�ne

Φ : L(S−1R)→ L(R)

by Φ(J) = {r ∈ R : r1 ∈ J}. Then Φ is an injective mapping that preserves
inclusions. Furthermore, the image of Φ is contained in the ideals of R that are
disjoint from S.

(iv) Let Ψ : L(R) → L(S−1R) be the map Ψ(I) = S−1I. Then ΨΦ is the
identity.

Proof: For (i) we know from the above lemmas that S−1I is an ideal and
that S−1I is proper if S ∩ I is empty.

(ii) Let J be an ideal of S−1R. I will show that Φ(J) as de�ned in the
theorem is an ideal. Let r1, r2 ∈ Φ(J). Then r1

1 ,
r2
1 ∈ J . That is, r1

1 + r2
1 =
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r1+r2
1 ∈ J . This means that r1 + r2 ∈ Φ(J). If r ∈ R and r1 is as before we

have r
1 ·

r1
1 = rr1

1 ∈ J so that rr1 ∈ Φ(J) so Φ(J) is an ideal. It remains to show
that ΨΦ(J) = J .We have that

ΨΦ(J) = {r
s

: s ∈ S, r ∈ Φ(J)} = {r
s

: s ∈ S, r
1
∈ J}

Note that if rs ∈ J then s
1
r
s = r

1 ∈ J . So
r
s ∈ ΨΦ(J) which means J ⊆ ΨΦ(J)

Conversely, if rs ∈ ΨΦ(J) then r
1 ∈ J so 1

s ·
r
1 = r

s ∈ J and equality prevails.
So ΨΦ(J) = J as desired.
(iii) We have shown that Φ : L(S−1R)→ L(R). We know that Φ is injective

because it has a left inverse, namely Ψ from the proof of part 2. It remain to
show that Φ preserves inclusions.

Namely if J1 ⊆ J2 then Φ(J1) = {r : r
1 ∈ J1} but if

r
1 ∈ J1 we know that

r
1 ∈ J2 so that r ∈ Φ(J2) so that Φ(J1) ⊆ Φ(J2). Furthermore, since Φ is
injective, it preserves strict inclusions.

(iv) We know that Ψ is a map from Ψ : L(R) → L(S−1R) and that ΨΦ is
the identity by our earlier work.

�
Corr:
If R is Noetherian (respectively Artinian) then so is S−1R)
This is immediate as we can translate any chain of ideals in S−1R to a chain

of ideals in R that respects inclusions.
Corr: K dimS−1R ≤ K dimR
For the same reason as above.
I will now show that it is not the case that ΦΨ is the identity.
Take R = Z and S = {2n : n ≥ 0}
Then S−13Z = { 3m2n : m ∈ Z, n ≥ 0}. On the other hand, S−16Z = { 6m2n :

m ∈ Z, n ≥ 0}.
It is straightforward to show the sets are equal. Namely given

3m

2n
. We

have
3m

2n
=

2

2

3m

2n
=

6m

2n+1
∈ S−16Z in S−1Z. On the other hand, given

6m

2n

we have 6m
2m = 3(2m)

2n ∈ S−13Z. This gives us the desired equality.It follows
that Φ is not a surjection. Furthermore, this example is another case of one of
the most useful uses of localization. Namely, given an element f ∈ A that is
not nil potent. That is, fn 6= 0 for any n (A is the ring in question) Then set
S = {fn :n ≥ 0}. Then S is multiplicative and the ring Af = S−1A is very
useful. For example, Spec(Af ) = {p ∈Spec(A) : p ∩ S} = ∅. That is, Spec(Af )
are those prime ideals of A that do not contain f .

I will now give a tentative argument for why one might give localization its
name. I will assume familiarity with localizing at a prime element covered in
the next lecture. Consider a complex function of a single variable f . One might
wonder if f is continuous or even better analytic. To check this, it su�ces to
check at every single point that the function is continuous or analytic. That is,
local information (with respect to the topology of C) is important. Now take
f(z) to be a polynomial over the complex numbers. If we choose a point z0 such
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that f(z0) 6= 0 then local to z0 that is, in some small ball around z0 we can

invert f . That is,
1

f(z)
is a perfectly good analytic function. In the algebraic

case, let A be a ring and a ∈ A . Now de�ne fa : Spec(A) → ∪p∈Spec(A)A/p.

By

fa(p) = a mod p

. That is, we regard elements of A as functions on the spectrum. Now, fa is
certainly a strange function, taking values in many di�erent rings. But notice
that if a /∈ p then fa(p) 6= 0. So a ∈ A−p. So a is in fact invertible in Ap . If we
identify a with fa this gives, at least some evidence that Ap could be regarded
as lying close to p. Since functions not vanishing at p are invertible in Ap.
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