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1 Universal algebra (con’t)

Last time we saw the three isomorphism theorems for universal algebra. Now we shall translate them into
their ring theory counterparts:

The first isomorphism theorem is straightforward to translate:
Theorem 1.1 (1% isomorphism theorem for rings). Let f : A — B be a homomorphism of rings. Then
there exists an injective map g : A/ Ker(f) — B such that:

a-lp

ANV

A/Ker(f)

commutes and if f is onto then g is onto.

The second states:
Theorem 1.2 (2" isomorphism theorem for rings). Let A be a ring and I and J be ideals of A with J C I
then

(AN /(1) =2 AlL

In particular there is a bijection between the set of ideals of 4/r and the set of ideals of A containing I.

2nd

Now we shall show how this relates to the isomorphism theorem for universal algebra.

For a ring A and 6 a congruence over A we consider I = {0}/g. Take a,b € I then af0 and b00 so (a + b)00
and a+b€l. Alsoif a € I and r € R then af0 and rfr so raf0 and ra € I. Therefore I is an ideal.

Conversely if I is an ideal we can define 6 by a@b if and only if a — b € 6. It can then be shown that 6 is a
congruence.

To translate the 3' we need to translate 6| g and B? for a subring, B, of A and congruence, 6, of A.
Taking I = {0}/, we can see that I N B = {0}/g|5.

By definition B? is the set of all equivalence classes of A which contain an element of B. This means we
want all the elements in each b+ I for b € B. In other words B = B + I.

We also note that {0}/6|,o = {0}/6 because we only took whole equivalence classes.

So we get:
Theorem 1.3 (3" isomorphism theorem for rings). Let A be a ring, I be an ideal of A and B be a subring
of A then

B/inp = B+I/1.



2 Modules

Definition 2.1. Let R be a ring. A left R-module is an abelian group (M, +) and a product R x M — M
satisfying

o la=a

o (rirg)a =r1(rea)

o (r+mr)a=ria+ra
e r(a+b)=ra+rb

Some examples:

Example 2.2. If R happens to be a field then a left R-module is a vector over R.
Example 2.3. If M C R then M is a a left R-module if and only if M is a left ideal.
Example 2.4. Abelian groups are Z modules by defining

Sri,g  ifn>0
ng=1q Y q(-g) ifn<0
0 ifn=0.

Example 2.5. If R is a subring of S then S is a left R-module by using multiplication in S.

We can see that R-modules are algebraic structures in the view of universal algebra. Take (M, +, =0, {m, },cr)
together with the axioms for Abelian groups and the four axioms in Definition 2.1. This gives us the defi-
nition for submodule and module homomorphism, isomorphism, epimorphism and homomorphism. We also
know that the three isomorphism theorems hold.

Note: We shall write N < M to mean that an R-module, N, is a submodule of an R-module, M.

The three isomorphism theorems for modules are:

Theorem 2.6 (15 isomorphism theorem for modules). Let f: M — N be a homomorphism of R-modules
then there exists an injective map g : M/Ker(f) — N and if [ is onto then g is onto.

Theorem 2.7 (2“d isomorphism theorem for modules). Let A, B,C be R-modules with C << B < A then

(4/c)/(B/c) = AlB.

Theorem 2.8 (3" isomorphism theorem for modules). Let A, B,C be R-modules with B < A and C < A
then
B/Bnc = B+C/c.

If My and M5 are R-modules then so are My + My and My N M.

If {M,;};cr is a chain of submodules of M then U;c;M; is a submodule of M.
Definition 2.9. Let {M;}ics be a collection of submodules of M. Define ), M; to be the set of all finite
sums of elements of the M;.

We can see that ) ;; M; is a submodule of M and also that ), ; M; is the smallest submodule of M
containing all every M;.

Definition 2.10. Let R be a ring and M an R-module. For any a € M there is an R-module homomorphism:

icl

fo: R — M
r = ra



3 Exact sequences and commutative diagrams

Definition 3.1. A sequence of homomorphism of modules:

s ALBL oo
is exact at B if f(A) = Ker(g).

A sequence is ezact if it is exact at each intermediate module.
Example 3.2.

O—>Ai>B

is exact if and only if 0 = Ker(f), meaning f is a monomorphism.
Example 3.3.

ALB—>O

is exact if and only if f(A) = B, meaning f is an epimorphism.
Example 3.4.
0545580

is exact if and only if it is exact at A and exact at B, meaning f is an isomorphism.
Definition 3.5. A exact sequence of the form:

0-ALBL o0
is called a short exact sequence.

For a short exact sequence
05A4LB% 00

e exactness at A means that f is a monomorphism,
e exactness at C means that g is an epimorphism and
e exactness at B means that f(A) = Ker(g).

This means by the 15¢ isomorphism theorem that B/f(4) = B/Ker(g) = C.
Example 3.6. Let X, V, W be vector spaces and

0-vLwihx o
be exact. Let A be the matrix of f (f(v) = Av) and Let B be the matrix of g ((g(w) = Aw).
Then Col(4) = Nul(B). Since dim(Col(A)) = rank(A) = dim(f(V)) = dim(V) and dim(Nul(B))

nullity(B), we have nullity(B) = dim(V'). By the rank-nullity theorem we have that nullity(B) + rank(B) =
dim(W). Since frank(B) = dim(Col(B)) = dim(g(W)) = dim(X) we have that

dim(W) = dim(V) + dim(X).

Now we will look at commutative diagrams which are a kind of arrow picture.

A commutative diagram is a digraph with a module at each vertex, a homomorphism compatible with each
of its endpoints’ modules for each directed edge and for any two paths between from vertex M to vertex N,
the composition of homomorphism along each path give the same homomorphism.



Example 3.7. Consider the diagram:
w1

|

If the diagram above commutes then go f = j o h.
Example 3.8. Another example of a commutative diagram is the diagram in the 15¢ isomorphism theorem.
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