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1 Universal algebra (con’t)

Last time we saw the three isomorphism theorems for universal algebra. Now we shall translate them into
their ring theory counterparts:

The first isomorphism theorem is straightforward to translate:
Theorem 1.1 (1st isomorphism theorem for rings). Let f : A → B be a homomorphism of rings. Then
there exists an injective map g : A/Ker(f)→ B such that:

A B

A/Ker(f)

f

ν g

commutes and if f is onto then g is onto.

The second states:
Theorem 1.2 (2nd isomorphism theorem for rings). Let A be a ring and I and J be ideals of A with J ⊆ I
then

(A/J)/(I/J) ∼= A/I.

In particular there is a bijection between the set of ideals of A/I and the set of ideals of A containing I.

Now we shall show how this relates to the 2nd isomorphism theorem for universal algebra.

For a ring A and θ a congruence over A we consider I = {0}/θ. Take a, b ∈ I then aθ0 and bθ0 so (a+ b)θ0
and a+ b ∈ I. Also if a ∈ I and r ∈ R then aθ0 and rθr so raθ0 and ra ∈ I. Therefore I is an ideal.

Conversely if I is an ideal we can define θ by aθb if and only if a− b ∈ θ. It can then be shown that θ is a
congruence.

To translate the 3rd we need to translate θ|B and Bθ for a subring, B, of A and congruence, θ, of A.

Taking I = {0}/θ, we can see that I ∩B = {0}/θ|B.

By definition Bθ is the set of all equivalence classes of A which contain an element of B. This means we
want all the elements in each b+ I for b ∈ B. In other words Bθ = B + I.

We also note that {0}/θ|
Bθ

= {0}/θ because we only took whole equivalence classes.

So we get:
Theorem 1.3 (3rd isomorphism theorem for rings). Let A be a ring, I be an ideal of A and B be a subring
of A then

B/I∩B ∼= B+I/I.
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2 Modules

Definition 2.1. Let R be a ring. A left R-module is an abelian group (M,+) and a product R×M →M
satisfying

• 1a = a

• (r1r2)a = r1(r2a)

• (r1 + r2)a = r1a+ r2a

• r(a+ b) = ra+ rb

Some examples:
Example 2.2. If R happens to be a field then a left R-module is a vector over R.
Example 2.3. If M ⊆ R then M is a a left R-module if and only if M is a left ideal.
Example 2.4. Abelian groups are Z modules by defining

ng =


∑n
i=1 g if n > 0∑n
i=1(-g) if n < 0

0 if n = 0.

Example 2.5. If R is a subring of S then S is a left R-module by using multiplication in S.

We can see thatR-modules are algebraic structures in the view of universal algebra. Take (M,+,−0, {mr}r∈R)
together with the axioms for Abelian groups and the four axioms in Definition 2.1. This gives us the defi-
nition for submodule and module homomorphism, isomorphism, epimorphism and homomorphism. We also
know that the three isomorphism theorems hold.

Note: We shall write N ≤M to mean that an R-module, N , is a submodule of an R-module, M .

The three isomorphism theorems for modules are:
Theorem 2.6 (1st isomorphism theorem for modules). Let f : M → N be a homomorphism of R-modules
then there exists an injective map g : M/Ker(f)→ N and if f is onto then g is onto.
Theorem 2.7 (2nd isomorphism theorem for modules). Let A,B,C be R-modules with C ≤≤ B ≤ A then

(A/C)/(B/C) ∼= A/B.

Theorem 2.8 (3rd isomorphism theorem for modules). Let A,B,C be R-modules with B ≤ A and C ≤ A
then

B/B∩C ∼= B+C/C.

If M1 and M2 are R-modules then so are M1 +M2 and M1 ∩M2.

If {Mi}i∈I is a chain of submodules of M then ∪i∈IMi is a submodule of M .
Definition 2.9. Let {Mi}i∈I be a collection of submodules of M . Define

∑
i∈IMi to be the set of all finite

sums of elements of the Mi.

We can see that
∑
i∈IMi is a submodule of M and also that

∑
i∈IMi is the smallest submodule of M

containing all every Mi.
Definition 2.10. Let R be a ring and M an R-module. For any a ∈M there is an R-module homomorphism:

fa : R → M
r → ra
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3 Exact sequences and commutative diagrams

Definition 3.1. A sequence of homomorphism of modules:

· · · → A
f−→ B

g−→ C → · · ·

is exact at B if f(A) = Ker(g).

A sequence is exact if it is exact at each intermediate module.
Example 3.2.

O → A
f−→ B

is exact if and only if 0 = Ker(f), meaning f is a monomorphism.
Example 3.3.

A
f−→ B → 0

is exact if and only if f(A) = B, meaning f is an epimorphism.
Example 3.4.

0→ A
f−→→ B → 0

is exact if and only if it is exact at A and exact at B, meaning f is an isomorphism.
Definition 3.5. A exact sequence of the form:

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence.

For a short exact sequence

0→ A
f−→ B

g−→ C → 0

• exactness at A means that f is a monomorphism,

• exactness at C means that g is an epimorphism and

• exactness at B means that f(A) = Ker(g).

This means by the 1st isomorphism theorem that B/f(A) = B/Ker(g) = C.
Example 3.6. Let X,V,W be vector spaces and

0→ V
f−→W

g−→ X → 0

be exact. Let A be the matrix of f (f(v) = Av) and Let B be the matrix of g ((g(w) = Aw).

Then Col(A) = Nul(B). Since dim(Col(A)) = rank(A) = dim(f(V )) = dim(V ) and dim(Nul(B)) =
nullity(B), we have nullity(B) = dim(V ). By the rank-nullity theorem we have that nullity(B) + rank(B) =
dim(W ). Since frank(B) = dim(Col(B)) = dim(g(W )) = dim(X) we have that

dim(W ) = dim(V ) + dim(X).

Now we will look at commutative diagrams which are a kind of arrow picture.

A commutative diagram is a digraph with a module at each vertex, a homomorphism compatible with each
of its endpoints’ modules for each directed edge and for any two paths between from vertex M to vertex N ,
the composition of homomorphism along each path give the same homomorphism.
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Example 3.7. Consider the diagram:

M N

U V

f

gh

j

If the diagram above commutes then g ◦ f = j ◦ h.
Example 3.8. Another example of a commutative diagram is the diagram in the 1st isomorphism theorem.

A B

A/Ker(f)

f

ν g
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