Math 800 Commutative Algebra Notes: September 11

Brad Jones

December 9, 2013

1 Universal algebra (con't)

Last time we saw the three isomorphism theorems for universal algebra. Now we shall translate them into their ring theory counterparts:

The first isomorphism theorem is straightforward to translate:

Theorem 1.1 (1st isomorphism theorem for rings). Let $f: A \to B$ be a homomorphism of rings. Then there exists an injective map $g: {}^{A}/Ker(f) \to B$ such that:

$$\begin{array}{c}
A \longrightarrow B \\
\nu \searrow f \\
g \\
A/Ker(f)
\end{array}$$

commutes and if f is onto then g is onto.

The second states:

Theorem 1.2 (2nd isomorphism theorem for rings). Let A be a ring and I and J be ideals of A with $J \subseteq I$ then

$$(A/J)/(I/J) \cong A/I$$
.

In particular there is a bijection between the set of ideals of A/I and the set of ideals of A containing I.

Now we shall show how this relates to the 2^{nd} isomorphism theorem for universal algebra.

For a ring A and θ a congruence over A we consider $I = \{0\}/\theta$. Take $a, b \in I$ then $a\theta 0$ and $b\theta 0$ so $(a + b)\theta 0$ and $a + b \in I$. Also if $a \in I$ and $r \in R$ then $a\theta 0$ and $r\theta r$ so $ra\theta 0$ and $ra \in I$. Therefore I is an ideal.

Conversely if I is an ideal we can define θ by $a\theta b$ if and only if $a - b \in \theta$. It can then be shown that θ is a congruence.

To translate the 3rd we need to translate $\theta|_B$ and B^{θ} for a subring, B, of A and congruence, θ , of A.

Taking $I = \{0\}/\theta$, we can see that $I \cap B = \{0\}/\theta|_B$.

By definition B^{θ} is the set of all equivalence classes of A which contain an element of B. This means we want all the elements in each b+I for $b \in B$. In other words $B^{\theta}=B+I$.

We also note that $\{0\}/\theta|_{B^{\theta}} = \{0\}/\theta$ because we only took whole equivalence classes.

So we get:

Theorem 1.3 (3rd isomorphism theorem for rings). Let A be a ring, I be an ideal of A and B be a subring of A then

$$B/I \cap B \cong B+I/I$$
.

2 Modules

Definition 2.1. Let R be a ring. A *left R-module* is an abelian group (M, +) and a product $R \times M \to M$ satisfying

- 1a = a
- $(r_1r_2)a = r_1(r_2a)$
- \bullet $(r_1+r_2)a=r_1a+r_2a$
- r(a+b) = ra + rb

Some examples:

Example 2.2. If R happens to be a field then a left R-module is a vector over R.

Example 2.3. If $M \subseteq R$ then M is a left R-module if and only if M is a left ideal.

Example 2.4. Abelian groups are \mathbb{Z} modules by defining

$$ng = \begin{cases} \sum_{i=1}^{n} g & \text{if } n > 0\\ \sum_{i=1}^{n} (-g) & \text{if } n < 0\\ 0 & \text{if } n = 0. \end{cases}$$

Example 2.5. If R is a subring of S then S is a left R-module by using multiplication in S.

We can see that R-modules are algebraic structures in the view of universal algebra. Take $(M, +, -0, \{m_r\}_{r \in R})$ together with the axioms for Abelian groups and the four axioms in Definition 2.1. This gives us the definition for *submodule* and module *homomorphism*, *isomorphism*, *epimorphism* and *homomorphism*. We also know that the three isomorphism theorems hold.

Note: We shall write $N \leq M$ to mean that an R-module, N, is a submodule of an R-module, M.

The three isomorphism theorems for modules are:

Theorem 2.6 (1st isomorphism theorem for modules). Let $f: M \to N$ be a homomorphism of R-modules then there exists an injective map $g: M/Ker(f) \to N$ and if f is onto then g is onto.

Theorem 2.7 (2nd isomorphism theorem for modules). Let A, B, C be R-modules with $C \leq \leq B \leq A$ then

$$(A/C)/(B/C) \cong A/B$$
.

Theorem 2.8 (3rd isomorphism theorem for modules). Let A, B, C be R-modules with $B \leq A$ and $C \leq A$ then

$$B/B \cap C \cong B + C/C$$
.

If M_1 and M_2 are R-modules then so are $M_1 + M_2$ and $M_1 \cap M_2$.

If $\{M_i\}_{i\in I}$ is a chain of submodules of M then $\cup_{i\in I}M_i$ is a submodule of M.

Definition 2.9. Let $\{M_i\}_{i\in I}$ be a collection of submodules of M. Define $\sum_{i\in I} M_i$ to be the set of all finite sums of elements of the M_i .

We can see that $\sum_{i \in I} M_i$ is a submodule of M and also that $\sum_{i \in I} M_i$ is the smallest submodule of M containing all every M_i .

Definition 2.10. Let R be a ring and M an R-module. For any $a \in M$ there is an R-module homomorphism:

$$\begin{array}{cccc}
f_a: & R & \to & M \\
& r & \to & ra
\end{array}$$

3 Exact sequences and commutative diagrams

Definition 3.1. A sequence of homomorphism of modules:

$$\cdots \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow \cdots$$

is exact at B if f(A) = Ker(g).

A sequence is exact if it is exact at each intermediate module.

Example 3.2.

$$O \to A \xrightarrow{f} B$$

is exact if and only if 0 = Ker(f), meaning f is a monomorphism.

Example 3.3.

$$A \xrightarrow{f} B \to 0$$

is exact if and only if f(A) = B, meaning f is an epimorphism.

Example 3.4.

$$0 \to A \xrightarrow{f} B \to 0$$

is exact if and only if it is exact at A and exact at B, meaning f is an isomorphism.

Definition 3.5. A exact sequence of the form:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is called a short exact sequence.

For a short exact sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

- \bullet exactness at A means that f is a monomorphism,
- \bullet exactness at C means that g is an epimorphism and
- exactness at B means that f(A) = Ker(g).

This means by the 1st isomorphism theorem that B/f(A) = B/Ker(g) = C.

Example 3.6. Let X, V, W be vector spaces and

$$0 \to V \xrightarrow{f} W \xrightarrow{g} X \to 0$$

be exact. Let A be the matrix of f(f(v) = Av) and Let B be the matrix of g(g(w) = Aw).

Then $\operatorname{Col}(A) = \operatorname{Nul}(B)$. Since $\dim(\operatorname{Col}(A)) = \operatorname{rank}(A) = \dim(f(V)) = \dim(V)$ and $\dim(\operatorname{Nul}(B)) = \operatorname{nullity}(B)$, we have $\operatorname{nullity}(B) = \dim(V)$. By the rank-nullity theorem we have that $\operatorname{nullity}(B) + \operatorname{rank}(B) = \dim(W)$. Since $\operatorname{frank}(B) = \dim(\operatorname{Col}(B)) = \dim(g(W)) = \dim(X)$ we have that

$$\dim(W) = \dim(V) + \dim(X).$$

Now we will look at commutative diagrams which are a kind of arrow picture.

A commutative diagram is a digraph with a module at each vertex, a homomorphism compatible with each of its endpoints' modules for each directed edge and for any two paths between from vertex M to vertex N, the composition of homomorphism along each path give the same homomorphism.

Example 3.7. Consider the diagram:

$$M \xrightarrow{f} N$$

$$h \downarrow \qquad \downarrow g$$

$$U \xrightarrow{j} V$$

If the diagram above commutes then $g \circ f = j \circ h$. **Example 3.8.** Another example of a commutative diagram is the diagram in the 1st isomorphism theorem.

$$\begin{array}{c}
A \xrightarrow{f} B \\
\nu \setminus g \\
A/\text{Ker}(f)
\end{array}$$