
Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 11 Recursive Random Generation

Recursive Random Generation

Contents
1 Lexicographic isn’t everything 1

1.1 Recall: Uniform generation . 1
1.2 Binary strings with no 00 substring . 1

2 Recursive generation 2
2.1 Combinatorial sum . 2
2.2 Product . 3
2.3 Binary Trees . 3

1 Lexicographic isn’t everything
1.1 Recall: Uniform generation
A uniform generation scheme for combinatorial class C outputs an element of C such that all elements of size n are
generated with equal probability. In the simplest scenario it takes as input n and outputs an element of Cn with
probability 1

Cn
. In all of our analysis we assume that we have a constant time, perfect random number generator

rnd that generates some element of (0, x). 1 Given this we can draw a random integer in the range [1..n] by

rnd[1..n] : brnd(0, 1) ∗ nc+ 1.

In general, when we discuss the complexity of an algorithm we will make clear the sort of operations that we
“count” towards the complexity. We say that an algorithm has runtime O(f(n)) if the actual run-time on input n,
denoted g(n), satisfies the limit

lim
n→∞

g(n)

f(n)
= c

for some constant c. To be O(1) implies something constant with respect to n, like an evaluation of rnd or a swap.

1.2 Binary strings with no 00 substring
Lexicographic unranking can be used for uniform random generation, but its not always convenient or efficient.
Consider binary strings with no 00 substring. We could view these as subsets and then order the subsets lex-
icographically, but how can we get a handle on what lists get skipped. Can we do something more systematic,
something from the combinatorial specification.

Alternately, to generate binary strings with no 00 substring we could do a rejection algorithm. However, it is a
small proportion of binary strings that are in this class, so this would actually waste a lot of time in the verification,
and in the excessive generation.

For now let us treat the draw routine like a black box– we will see how to build it in the next section. First, let
us see how we could play with it.

Maple
> with(combstruct):
Encode 1* (011*)* (ep+0)
> Sys:= {W= Prod(Sequence(Z1), Sequence(Prod(Z0, Z1, Sequence(Z1))),

Union(E, Z0)), Z0= Atom, Z1=Atom, E=Epsilon}:

Verify that the OGF is Fibonacci
> gfseries(Sys, unlabelled, z)[W(z)];

series(1+2*z+3*zˆ2+5*zˆ3+8*zˆ4+13*zˆ5+O(zˆ6),z,6)

Make a procedure to tidy the output
> clean_string:= proc(w)
> eval(subs(Prod=(()-> args), Sequence=(()->args), E=NULL, Epsilon=NULL, Z0=0, Z1=1, w))

1Why is this at all a reasonable assumption? Good question, and a topic for another day.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/4

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 11 Recursive Random Generation

> end proc:
>clean_string(draw([W, Sys, unlabelled], size = 5));

0, 1, 0, 1, 1

Hmmm. Now we are motivated to be even more efficient. It should be sufficient to generate (randomly)
the number of 0s, and the sizes of the blocks between them. But how to do this so that uniform generation is
preserved..?

We could start to answer this question by generating lots of long strings to guess the distribution of number of
0s, and the lenghts of the blocks of 1s.

Here is the first part.
Maple

> Sys:= {W= Prod(Sequence(Z0), Sequence(Prod(Z0, Z1, Sequence(Z1))),
Union(E, Z0)), Z0= Atom, Z1=Atom, E=Epsilon}:

> N:= 200:
> for i from 1 to N do
> w:= combstruct[draw]([W, Sys, unlabelled], size = 200):
> Total[i]:=nops([eval(subs(Prod=(()-> args), Sequence=(()->args),

E=NULL, Epsilon=NULL, Z0=0, Z1=NULL, w))]);
>end do:
>average:= evalf(add(Total[i], i=1..N)/N);

57.46000000

to get a full histogram try: Statistics[Histogram]([seq(Total[i], i=1..N)]);

The result of this maple is appended at the end of this document.

Exercise. One of the Andrews had two ideas. Determine if they are true uniform random generation schemes.
Idea one: For each step generate a 1 or a 01 with equal probability.
Idea two: For each step flip a coin. After a zero always place a one.

2 Recursive generation
Next we describe a recursive generation scheme for structures using combinatorial sum and product operators.
Let us recall the notation that An is the number of objects of size n in class A.

For each class we want to describe a procedure genA which takes as argument n and returns a random element
of A such that each element of size n has probability 1

An
of being generated. If there is no element of that size, the

procedure returns NULL.
We will assume, in the algorithm descriptions below that the enumerative information is available, say in a

table or a sub-routine. The Maple implementation builds a table as a pre-processing step.
We start with descriptions of very trivial generator for the atom and neutral classes.

Recursive Generator: Atom
// input n, a positive integer
// generates an Atom (if n=1)
genZ:= proc(n)

if n=1 then Z else NULL
end proc;

Recursive Generator: Epsilon
// input: n, a positive integer
// ouput: an Epsilon if n=0.

genE:= proc(n)
if n=0 then E else NULL

end proc;

Given these foundations, we can build up generators for the larger classes.

2.1 Combinatorial sum
This operator is quite straightforward. Let us suppose that A = B + C. Imagine that we have a method for
generate elements of B and C. How do we describe a method to generate elements from A, again ensuring that the

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/4

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 11 Recursive Random Generation

generation is uniform? We need a mechanism to decide whether or not to generate an element from B or C, and
then we call those subroutines.

Consider the probabilities: The probability that element of An “came from” Bn is Bn
An

.
Recursive Generator: Combinatorial Sum A = B + C

// input: n a positive integer
// output: a uniformly generated element of A of size n
// remark: A= B+C
genA:= proc(n)

let x = rnd(0,1):
if x< Bn/(Bn+Cn) then Return genB(n) else Return genC(n);

od:
end proc;

2.2 Product
If A = B × C then the probability that a A structure of size n has a B-component of size k and an C-component of
size n− k is

BkCn−k

An
.

Thus, we first generate a random number between 0 and 1 and then we find the smallest k such that the probability
of generating a B-component of size k or smaller is less than this number, and iterate on k

Recursive Generator: Product A = B × C
// input: n a positive integer
// output: a uniformly generated element of A of size n
// A= B*C
genA:= proc(n)

let x = rnd(0,1)
k:= 0; s:= (b(0)*c(n))/a(n)
while x > s do

k:= k+1
s:= s+ (b(k)*c(n-k))/an

od
Return (genB(k), genC(n-k))

end proc

Note that the cost of drawing k is equal to the number of iterative steps, i.e., is equal to k

2.3 Binary Trees
Let us try this out with binary trees. Now, we are lucky in this case, because we know the generating function,
and an explicit expression for the n-th coefficient.

B = Z + Z × B × B

B2n+1 =
(
2n
n

)
1

n+1
.

Recursive Generator: Binary trees B = Z + Z × B × B
// input: n a positive integer
// output: a uniformly generated binary tree with n vertices

genA:= proc(n)
if n is even then NULL
// Handle the union
let x = rnd(0,1)
if x <= Z(n)/B(n) then genZ(n) //Z(n)=1 if n=1 and 0 otherwise
else // Handle the product

k:= 0; s:= (B(1)*B(n-2))/B(n)
while x > s do

k:= k+1
s:= s+(B(k)*B(n-k-1))/B(n)

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/4

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 11 Recursive Random Generation

od
Return (genZ(1), genB(k), genB(n-k-1))

end proc

We could do a precise analysis to show that this method for generating a tree is O(n3/2) and this is drieclty
related to the asymptotic form of Catalan numbers. This is not the most efficient method.

The problem of scanning k from 0 to n is that, for large binary trees (as revealed by some simple asymptotic
analysis) most of the size n is concentrated either on the left subtree or on the right subtree. Hence it is better to
test for the values of k in the following order: k = 0, n− 1, 1, n− 2, 2, n− 3, . . . (instead of k = 0, 1, 2, ...). Using this
rule, one obtains a worst- case complexity of order n log(n).

We will look at sequences later.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/4

(1.2)(1.2)

(1.1)(1.1)

(1)(1)

O O

O O

(1.3)(1.3)
O O

O O

O O

O O

(1.5)(1.5)

(1.4)(1.4)

O O

restart:
with(combstruct):

agfeqns, agfmomentsolve, agfseries, allstructs, count, draw, finished, gfeqns, gfseries, gfsolve,
iterstructs, nextstruct

Binary strings with no "00" substring
We define a grammar for all binary strings with no 00 subsequence. We decompose the string by
occurrences of 0.

Sys:= {W= Prod(Sequence(Z0), Sequence(Prod(Z0, Z1, Sequence(Z1)
)), Union(E, Z0)), Z0= Atom, Z1=Atom, E=Epsilon};

Sys := E = E, W = Prod Sequence Z0 , Sequence Prod Z0, Z1, Sequence Z1 ,

Union E, Z0 , Z0 = Atom, Z1 = Atom

These are counted by Fibonacci numbers, which we see in the ogf.
gfseries(Sys, unlabelled, z)[W(z)];

1C 2 zC 3 z2 C 5 z3 C 8 z4 C 13 z5 CO z6

We can draw a random string of a given length. The output is awkward looking.
draw([W, Sys, unlabelled], size = 5);

Prod Sequence Z0, Z0 , Sequence Prod Z0, Z1, Sequence Z1 , E

So, let us clean it up. We remove the Epsilons, and the labels indicating a sequence or product
construction.

clean_string:= proc(w)
 eval(subs(Prod=(()-> args), Sequence=(()->args), E=NULL,
Epsilon=NULL, Z0=0, Z1=1, w))
end proc;

clean_string := proc w
eval subs Prod = /args , Sequence = /args , E = NULL, Epsilon
= NULL, Z0 = 0, Z1 = 1, w

end proc
clean_string(draw([W, Sys, unlabelled], size = 5));

0, 0, 0, 0, 0

Efficiency
The program sets up an inital counting table to compute probabilities. It saves this in its memory the
table so subsequent calls are faster. This explains the outlier points. Otherwise, the algorithm
appears linear in n.

Digits:= 10:

for i from 1 to 200 do
 Sys:= {W= Prod(Sequence(Z0), Sequence(Prod(Z0, Z1, Sequence
(Z1))), Union(E, Z0)), Z0= Atom, Z1=Atom, E=Epsilon}:
 T1:= time():
 draw([W, Sys, unlabelled], size = 10*i):
 TIME[i]:= time()-T1:
end do:
plots[listplot]([seq(TIME[i], i=1..200)], style=point);

(1.2.1)(1.2.1)

O O

O O

O O

20 40 60 80 100 120 140 160 180 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Compare this linear algorithm to an algorithm which generates all strings, and then discards the
strings with 00 substrings. How could we be even more efficient? We really just want to decide the
number of 0s, and then the length of 1 strings between them. But, how to do this with the right
probability????

Properties of a random string
The expected number of 0s in a binary string with no 00 substring

Sys:= {W= Prod(Sequence(Z0), Sequence(Prod(Z0, Z1, Sequence
(Z1))), Union(E, Z0)), Z0= Atom, Z1=Atom, E=Epsilon}:
N:= 200:
for i from 1 to N do
 w:= draw([W, Sys, unlabelled], size = 200):
 Total[i]:=nops([eval(subs(Prod=(()-> args), Sequence=(()
->args), E=NULL, Epsilon=NULL, Z0=0, Z1=NULL, w))]);
end do:
average:= evalf(add(Total[i], i=1..N)/N);

average := 57.46000000
Statistics[Histogram]([seq(Total[i], i=1..N)]);

O O

50 55 60 65
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Sys:= {W= Prod(Sequence(Z0), Sequence(Prod(Z0, Z1, Sequence
(Z1))), Union(E, Z0)), Z0= Atom, Z1=Atom, E=Epsilon}:
N:= 500:
for i from 1 to N do
 w:= draw([W, Sys, unlabelled], size = 200):
 Total[i]:=nops([eval(subs(Prod=(()-> args), Sequence=(()
->args), E=NULL, Epsilon=NULL, Z0=0, Z1=NULL, w))]);
end do:
Statistics[Histogram]([seq(Total[i], i=1..N)]);

45 50 55 60 65 70
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

The average is about 57, and it appears to be a binomial distribution, but it is tough to say.

