
Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 13 Boltzmann Samplers II

Boltzmann Samplers II

Contents
1 Questions 1

2 Reality 1
2.1 Implementing a distribution generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Evaluating the generating function from the series expression . . . . . . . . . . . . . . . . 2
2.3 Finding the optimal x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Exact-size and Approximate size sampling 2

4 Examples 4
4.1 Bumpy distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Word Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 Improvement strategy for peaked distributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Questions
Let let us consider some relevant questions:

1. How do you evaluate the generating function?

2. How fast is this?

3. How do you pick x?

One can state this firmly under the assumption that the evaluations at x (which are real numbers) of
the generating functions intervening in the decomposition of A are known exactly. This assumption is
known as the oracle assumption (one imagines that an oracle provides the values for us). In practice,
one evaluates the generating functions with a fixed precision, say N digits (typically N = 20) and in the
unlikely case one needs more digits during the generation of an object, one computes a few more digits
of the generating functions (adaptative procedures).

Theorem. Let A be a decomposable class in terms of the constructions {+,×} and the basic classes
{E ,Z}, and let ΓA(x) be the Boltzmann sampler obtained from the sampling rules. Then, under the
oracle assumption, the generation of an object α ∈ A by ΓA(x) takes time O(|α|).

2 Reality
Today we consider implementation and other practical concerns.

2.1 Implementing a distribution generator
How do we actually implement a geometric? The general scheme is a sequential algorithm. Let pk be
the probability that a random variable with the desired distribution has value k:

Geom(λ) : pk = (1− λ)λk

Generating component size: Generic sequential algorithm
// input: none
// output: positive integer k
// global: p(k): probability of X=k
componentSize:= proc()

U= rand[0,1];
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S:= 0; k:= 0;
while S < U do

S:= S+p(k);
k:= k+1;

od
return k;

od:

2.2 Evaluating the generating function from the series expression
Our samplers are sensitive to floating point arithmetic. Thus, one issue is performing the generating
function evaluations. These are finite in number, and can be done in advance. We need caution to avoid
rouding errors, and to determine how to evaluate a generating function if we do not have it explicitly. In
practice, this case is handled with incremental series expansions. Determining good general strategies
is a very active area of current research.

More precisely: in practice, one may realize approximately a Boltzmann sampler by truncating real
numbers to some fixed precision, say using floating point numbers represented on 64 bits or 128 bits.
The resulting samplers operate in time that is linear in the size of the object produced, though they may
fail (by lack of digits in values of generating functions, i.e., by insufficient accuracy in parameter values)
in a small number of cases, and accordingly must deviate (slightly) from uniformity. Pragmatically,
such samplers are likely to suffice for many simulations.

2.3 Finding the optimal x
By construction, the size of the resulting object under Boltzmann model is random variable. Let us
denote it by N .

Theorem. In an ordinary Boltzmann model of parameter x, the first and second moments satisfy

Ex(N) = x
A′(x)

A(x)
, Ex(N2) =

x2A′′(x) + xA′(x)

A(x)
. (1)

The same expressions are valid, replacing the egf A(x) for ogf in the case of an exponential Boltzmann
model. In both cases the expected size is an increasing function of x.

Proof.

Ex(N) =
∑
α∈A
|α|Px(α) =

∑
n

nAn
xn

A(x)
= x

A′(x)

A(x)
.

For instance, in the case of binary words, the coherent choice x = 0.4 leads to a size with mean value
4 and standard deviation about 4.47; for x = 0.4950, the mean and standard deviation of size become
respectively 100 and 100.5. For cyclic permutations, we determine similarly that the choice x = 0.99846
leads to an object of mean size equal to 100, while the standard deviation is somewhat higher than for
words, being equal to 234. In general, the distribution of random sizes under a Boltzmann model, as
given by Equation 1, strongly depends on the family under consideration. Figure 1 illustrates three
widely differing profiles: for set partitions, the distribution is bumpy, so that a choice of the appropri-
ate x will most likely generate an object close to the desired size; for surjections (whose behaviour is
analogous to that of binary words), the distribution becomes fairly flat as x nears the critical value; for
trees, it is peaked at the origin, so that very small objects are generated with high probability.

3 Exact-size and Approximate size sampling
Exact-size random sampling where objects of A are drawn uniformly at random from the subclass

An, of objects of size exactly n.
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Figure 1: Size distributions under Boltzmann models for various values of parameter x. From top to bottom: the
‘bumpy’ type of set partitions, the flat type of surjections, and the ‘peaked’ type of general trees
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Approximate-size random sampling draws objects with size in an interval of the form I(n, ε) = [n(1−
ε), n(1 + ε)], for some quantity ε, called the relative tolerance. In applications, one is likely to
consider cases where ε is a small fixed number, like 0.05, corresponding to uncertainty in sizes
of ±5%. Though size may fluctuate, sampling is still unbiased in the sense that two objects with
the same size are drawn with equal likelihood. Remark, that they are not neccessarily drawn
uniformly across the interval.

The conditions of exact and approximate size-sampling are automatically satisfied if one filters the
output of a Boltzmann generator by retaining only the elements that obey the desired size constraint.
Such filtering is achieved by a rejection technique: reject a constructed object when it is too small, and
stop building an object once it has become too large.

The principal conclusion is that in many cases, approximate-size sampling is achievable in linear
time. In addition, the computed constants (i.e. the evaluations of the generating functions) remain
“reasonably sized”.

Rejection algorithm
// input: x, n, ep
// output: an object from the class C of size in the range n(1-ep), n(1+ep)
muC:= proc(x,n,ep)

repeat
g=gammaC(x)

until n(1-ep) <size(g) <n(1+ep)
return g

To optimize, choose xn to be the smallest positive real root of the equation n = xC
′(x)
C(x) .

Theorem. Let C be a combinatorial class and let ε be a fixed relative tolerance on size. Let ρ be the
radius of convergence of C(z). Then if

lim
x→ρ−

x
C ′(x)

C(x)
=∞,

(and a related condition) then rejection sampler µC(xn, n, ε) succeeds in one trial with probability tend-
ing to 1 as n→∞. In this case, the overall cost of an approximate-size sampling is O(n) on average.

4 Examples
4.1 Bumpy distributions
Any time the size-distribution for a given x is a peaked distribution, it is with high probability the
rejection strategy will work in one trial. A linear time construction results.

There exist precise analytic conditions from which we may predict a bumpy distribution, and hence
efficient exact sampling, but their statement is beyond the scope of this course. It includes obejcts with
a generating function of the form ep(z) for some polynomial p, with non-negative coefficients. These
come up quite frequently in labelled counting.

4.2 Word Families
Binary are a good example of a flat distribution. The ogf is W (z) = 1

1−2z and the probability assigned to
any word is x|w|(1− 2x). Coherent values of x are in the range (1, 1/2). The process is thus, draw a ran-
dom variable N according to a geometric distribution with parameter 2x. If the value N = k, then draw
uniformly at random any possible word of size n. The probability distribution flattens as x increases to-
wards 1/2. This is typical behaviour of sequence type objects, for example, compositions. Nonetheless, a
simple rejection strategy succeeds in O(1) trials on average, a fact that ensures linear time complexity
when a non-zero tolerance is allowed. The set of combinatorial classes which display this behaviour
is also mathematically well-defined, and its definition relies on the nature of the singularities of the
generating function.
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4.3 Improvement strategy for peaked distributions
Rooted plane trees of all types and Catalan objects are examples of objects whose size distributions are
peaked at the origin. There is an advanced technique of ’pointing’ which improves the performance.
The basic idea is that you take an object of size n, and create n new objects by assigning a point to one
atom in the object. There are n different atoms, and hence n different objects are created.

We denote by A• the pointed version of A. This is an admissible operation in the labelled case
because A•n = nAn, and hence

A•(z) = z
d

dz
A(z).

We view pointing as a combinatorial equivalent of taking the derivative.
Now, remark, the uniform generation of A• can be used for uniform generation of A objects by

simply forgetting the point. The distribution in a given size is uniform, but the distribution of sizes is
very different.

We do not need any further machinery to handle pointing, we can describe a specification for pointed
objects using our usual operators. Consider pointed binary trees. Given a binary tree, either the point
is in the root, or the left child or the right child. (Or, it is a leaf, and is pointed.) Consider the following
specification:

Example (Binary Trees).

B = Z + Z ? B ? B B• = Z• + Z• ? B ? B + Z ? B• ? B + Z ? B ? B•

We can do this systematically by applying the following rules:

Z• = Z
E• = E

(A+ B)• = A• + B•

(A× B)• = A• ? B +A ? B•

(SEQ(A))• = SEQ(A)A•SEQ(A)

Exercise. Find an explanation/interpretation for each of these rules. Also try to view them as combi-
natorial versions of different rules for the derivative.

Now, from the point of view of random generation, pointed versions are better for generating larger
structures.
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