
Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 14 Gray Codes

Gray Codes

Contents
1 Exhaustive generation 1

1.1 Questions to ask for any exhaustive generation scheme . 1

2 Gray Codes 1
2.1 Gray codes are useful in practice . 2
2.2 Reflected Binary Gray Code (RBC) . 2
2.3 Unranking . 4

3 Other Gray Codes 4
3.1 Balanced Transition Counts . 4
3.2 Beckett-Gray code . 4

1 Exhaustive generation
Now lets return to consider exhaustive generation. We have already discussed lexicographical ordering
of binary strings– which is essentially like an odometer. We are particularly interested in minimal
change algorithms in which each object is generated from the previous by a minimal change, however
that is measured.

1.1 Questions to ask for any exhaustive generation scheme
Given a combinatorial class An, let C = C(An) = [C1, C2, . . .] be a permutation of the elements. We
recall the notion of a ranking operator on a classAwhich is a bijective map rank which takes an element
α ∈ An and returns a positive integer r ∈ [1..An].

What is the successor rule? Given an element, is it easy to determine the next element in the se-
quence? (without tracing through a stored version of all elements, of course...)

What is the unranking function or encoding rule for C? Given r, can we quickly determine the
r-th element in C.

What is the ranking function/ decoding rule for C?

Our first, fundamental class of exhaustive generation algorithms are called Gray codes.

2 Gray Codes
Distance for binary strings is the number of positions in which the binary strings differ. This is called
the Hamming distance. A Gray code is an ordering of binary strings in which two consecutive strings

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/4

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 14 Gray Codes

have distance 1. The usual binary encoding of integers is not a Gray code since, for example, when we
switch from 2k − 1 to 2k, we will change k + 1 bits.

However, we can modify this so that we iteratively change the least significant bit that will form a
new code word:

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1

...
However, in this case, the last string will be 1111, which is quite far from 0000. Now, there are several
different ways to exhaustively describe binary string using Gray codes.

2.1 Gray codes are useful in practice
Imagine your binary string describes the present state of a large manufacturing machine. You would
like to test all settings on your machine. Using a Gray code to do this means that you only need to
change one single setting each time. If changing a setting takes time, for example requires cleaning
a part or something physical, considerable efficiency is gained by using a Gray code. Your machine
may impose other constraints on your code, so we will also investigate other strategies for finding Gray
codes.

2.2 Reflected Binary Gray Code (RBC)
The Gray code was described by Frank Gray of Bell labs who patented their use for shaft encoders in
1953. We recursively describe a scheme as follows. Let us denote by R(n) the order of all binary strings
of length n generated by the scheme.

In the first step list 0 then 1:
R(1) = 0, 1

Generate the next step by listing the code so far, then the code in the reverse order. Prepend a 0 to the
listing in original orientation, and a 1 to the elements listed in reverse order:

R(2) = 00, 01, 11, 10

Repeat this process until the desired length is acheived:

R(3) = 000, 001, 011, 010, 110, 111, 101, 100

Once more:

R(4) =

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/4

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 14 Gray Codes

In this generation scheme the last element and the first also differ only by 1. A Gray code is cyclic if
the first and last element differ by 1.

Proposition. R(n) is a cyclic Gray code

Proof. There are two things we need to show. First that every binary word appears exactly once and
second that the distances (including between the first and last) are always 1.

We will do this by induction. The base case is n = 1 which is clear.
Take n > 1. By induction the elements of R(n−1) are all binary strings of length n−1. Thus the first

half of R(n) consists of 2n−1 distinct binary strings of length n beginning with 0, and the second half of
R(n) consists of 2n−1 distinct binary strings of length n beginning with 1. Therefore R(n) consists of 2n
distinct binary strings of length n. But this is all of them, so each binary string appears exactly once in
R(n).

By induction the difference between successive elements of R(n − 1) is always 1, so the difference
between the ith and (i+ 1)st elements of R(n) is 1 for

i ∈ {0, 1, . . . , 2n−1 − 2, 2n−1, . . . , 2n − 1}

It remains to check the middle and the first and last. For the middle

d(R(n)2n−1−1, R(n)2n−1) = d(0R(n− 1)2n−1−1, 1R(n− 1)2n−2n−1−1) = D(0R(n− 1)2n−1−1, 1R(n− 1)2n−1−11

For the first and last

d(R(n)0, R(n)2n−1) = d(0R(n− 1)0, 1R(n− 1)2n−(2n−1)−1)D(0R(n− 1)0, 1R(n− 1)0) = 1

Letting d(w) be the Hamming weight of the binary string w, that is the number of nonzero entries
of w this gives the following successor algorithm

Algorithm: GraySuccessor
input: n, w. w is a binary word of length n

result = w
if d(w) is even

flip the last bit of result
else

j=n
while result(j) = 0 and j > 0

j = j-1
if j=1

return no successor
flip (j-1)th bit of result

return result

Note that the while loop finds the rightmost 1 and then we operate on the bit before it. For example
if n = 4 and w = 0010 then we are not even, so we end up in the loop, and the while loop terminates
with j = 3, so we swap bit 2 to get the successor 0110.

Exercise. Prove by induction that the successor algorithm works

We can also encode this code by the sequence of positions that are changed, called the transition
sequence:

(0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0).

when indexing with 0 on the right, or with 0 on the left this would be

(3, 2, 3, 1, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 3).

Is there a way to have direct access to the kth element in the sequence? Let us denote this string by
rn(k). For example, rn(1) = 0n, and rn(2n) = 10n−1. For which k is rn(k) = 1n?

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/4

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 14 Gray Codes

2.3 Unranking
To describe this, let us first recall the “exclusive or” operator (XOR) operator:

0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.

To encode an integer k with 1 ≤ k ≤ 2n into the word Ck = (cn−1, . . . , c1, c0) we first write k−1 in binary:
k − 1 = (bn−1, bn−2, . . . , b0)

1. Then compute the cj

cn−1 = bn−1

cj = bj ⊕ bj+1, j = 0, 1, . . . , n− 1.

Example. For example, r4 = (12) = r4(11002) = 1010, which we can confirm in the above figure, the
13-th string is 1010.

3 Other Gray Codes
3.1 Balanced Transition Counts
If we look at the transition sequence, most of the time, we change the rightmost bit, and there is only
one place we change the rightmost (twice if we count cyclically). For any cyclic n-bit Gray code C we can
keep track of the transition count, a vector (kn−1, kn−2, . . . , k0) where ki is the number of times position
i transitions. Prove that each ki is even (consider it cyclically) and that the average value is 2n/n. It
can be shown that for every n = 2m there exists a Gray code where the transition counts are equal.
This is a difficult construction.

3.2 Beckett-Gray code
Another interesting type of Gray code is the BeckettGray code. The BeckettGray code is named after
Samuel Beckett, an Irish playwright especially interested in symmetry. One of his plays, ”Quad”, was
divided into sixteen time periods. At the end of each time period, Beckett wished to have one of the four
actors either entering or exiting the stage; he wished the play to begin and end with an empty stage;
and he wished each subset of actors to appear on stage exactly once. Clearly, this meant the actors on
stage could be represented by a 4-bit binary Gray code. Beckett placed an additional restriction on the
scripting, however: he wished the actors to enter and exit such that the actor who had been on stage
the longest would always be the one to exit. The actors could then be represented by a first in, first out
queue data structure, so that the first actor to exit when a dequeue is called for is always the first actor
which was enqueued into the structure. Beckett was unable to find a BeckettGray code for his play,
and indeed, an exhaustive listing of all possible sequences reveals that no such code exists for n = 4.
Computer scientists interested in the mathematics behind BeckettGray codes have found these codes
very difficult to work with. It is today known that codes exist for n = {2, 5, 6, 7, 8} and they do not exist
for n = {3, 4}.

1That is, k − 1 = b0 + 2b1 + 4b2 + . . . 2n−1bn−1

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/4

