Revolving door ordering

Contents

1 Minimal Change Ordering for subsets 1

1.1 Subsets of an n-set . 1
1.2 Generating k-subsets . 1
1.3 Proofs . 2

1 Minimal Change Ordering for subsets

1.1 Subsets of an n-set

Fix n, and consider the class of subsets of an n-set. We want to generate all elements of this class with a minimum change. For example, between consecutive elements in a listing, we perhaps there is a difference of a single element.

We have already explored binary strings, and we have also already explored the connection between generating binary strings and generating a subset. A Gray code for binary strings implicitly describes a minimal change exhaustive generation scheme for the set of subsets of an n-set.

Well, that was easy! Now let us make it harder.

1.2 Generating k-subsets

Let us consider a restriction: all possible $\binom{n}{k} k$-subsets of an n-set. We can formuate this in terms of binary strings: the difference between two binary strings must be at least two, and ideally we would like to describe a scheme in which the difference is exactly 2 bits.

First, we describe a natural minimal change order which is analogous to $\operatorname{RBC} R(n)$. Let us use some information that we have at our disposal:

$$
\binom{n}{0}=\binom{n}{n}=1 \quad\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}, 1 \leq k \leq n .
$$

This identity actually suggests a minimal change order for k-subsets, defined in a recursive way. RBC can be viewed as an interpretation of the identity

$$
2^{n}=2^{n-1}+2^{n-1}
$$

and we let this guide us. The number of empty subsets of an n-set is one, the empty set and this is represented

$$
R_{0}(n)=[\underbrace{00 \ldots 0}_{k}] .
$$

Likewise,

$$
R_{n}(n)=[\underbrace{11 \ldots 1}_{k}]
$$

Now, assume we have a minimal change sequence $R_{k}(n-1)$ for all k. Then

$$
R_{k}(n)=0 \cdot\left\{R_{k}(n-1)\right\}, 1 \cdot\left\{R_{k-1}(n-1)^{R}\right\}
$$

where ${ }^{R}$ means to reverse the order of the sequence.
If we interpret the binary strings occuring in $R_{k}(n)$ as k-subsets with the first bit representing the appearance or nonappearance of n, the second bit $n-1$ and so on, then we can rephrase this definition as follows

$$
R_{k}(n)=\left[R_{k}(n-1),\{n\} \cup R_{k-1}(n-1)^{R}\right]
$$

For example,

$$
R_{1}(2)=\left[0 R_{1}(1), 1 R_{0}(1)^{R}\right]=[01,10] .
$$

A more complicated example. We represent it as a matrix:

$$
R_{2}(4)=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

1.3 Proofs

We want to prove that $R_{k}(n)$ defines a cyclic minimal change ordering of all k-subsets of $[n]$. This order is called the Revolving door order. First we need a proposition to help us understand the beginning and the end of the order

Proposition. For $k>0$, the first row of $R_{k}(n)$ is $[0 \cdots 01 \cdots 1]$ and the last row of $R_{k}(n)$ is $[10 \cdots 01 \cdots 1]$.
Proof. By induction on n. The base case is $n=1$, hence $k=1$ which was can observe directly is true.
Assume the result holds for $n=m \geq 1$, and for any $0 \leq k \leq m$. Now consider $n=m+1$.
If $k=n$ then the result can again be observed directly. Assume $1 \leq k \leq n-1$. Then the first row of $R_{k}(n)$ is the first row of $R_{k}(n-1)$ with an extra 0 at the beginning which by induction is as it should be. The last row of $R_{k}(n)$ is the first row of $R_{k-1}(n-1)$ with an extra 1 at the beginning, which by induction is as it should be.

Theorem. The rows of $R_{k}(n)$ represent a cyclic minimal change ordering of all k-subsets of $[n]$.
Proof. We prove this by induction on n. Again $n=1$ gives $k=1$ and so can be observed directly.
Assume the result holds for $n=m \geq 1$, and for any $0 \leq k \leq m$. Now consider $n=m+1$.
If $k=n$ or $k=0$ then the result can again be observed directly. Assume $1 \leq k \leq n-1$.
Consider the distance between adjacent rows of $R_{k}(n)$. The adjacent differences among the first $\binom{n-1}{k}$ rows are the same as the adjacent differences between the rows of $R_{k}(n-1)$ and so by induction are all 2 . Likewise the adjacent differences among the last $n-1 k-1$ rows are the same as the adjacent differences between the rows of $R_{k-1}(n-1)$ and so by induction are all 2 . It remains to check the difference between the $\binom{n-1}{k}$ th row and its successor, and between the first and last rows.

The $\binom{n-1}{k}$ th row of $R_{k}(n)$ is the $\binom{n-1}{k}$ th row of $R_{k}(n-1)$ with an extra 0 at the beginning. The next row of $R_{k}(n)$ is the $\binom{n-1}{k-1}$ th row of $R_{k-1}(n-1)$ with an extra 1 at the beginning. By the proposition these two rows of $R_{k}(n)$ are the following two rows

$$
\left[\begin{array}{lllllllll}
0 & 1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 0 & 0 & 1 & \cdots & 1
\end{array}\right]
$$

which are distance 2 apart.
The first row of $R_{k}(n)$ is the first row of $R_{k}(n-1)$ with an extra 0 at the beginning. The last row of $R_{k}(n)$ is the first row of $R_{k-1}(n-1)$ with an extra 1 at the beginning. By the previous proposition these rows are

$$
\left[\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 0 & 0 & 1 & \cdots & 1
\end{array}\right]
$$

which are distance 2 apart. This completes the proof.
This generation scheme has a major drawback- To compute $R_{k}(n)$ you need to compute $R_{k-1}(n-$ 1), $R_{k}(n-1)$ and thus also $R_{k-2}(n-2), R_{k-2}(n-1), R_{k-1}(n-2), R_{k}(n-1) \ldots$ which will either represent a lot of repeated calculation, or a lot of storage.

Next time we'll look at a successor function for this ordering, so that we never need to generate it by the definition.

