
Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 17 Generating Trees

Generating Trees

Contents
1 Generating Trees 1

1.1 Permutations . 1
1.2 Generating Trees . 2
1.3 Generating trees to ogf . 3

1 Generating Trees
Generating trees offer a more global approach for exhaustive generation. They were described in this
form as early as 1978 by Chung, Graham, Houggatt and Kleeman for some restricted families of per-
mutations. They are useful for enumeration and for exhaustive generation.

1.1 Permutations
We start this discussion with an example, permutations. We can generate a subset of permutations of
length n+ 1 from a permutation of length n. Consider the one line notation for the permutation σ– we
can insert n into any of the positions.

[3 5 4 1 2 6]

[3 5 4 1 2 6 7] [3 5 4 1 2 7 6] [3 5 4 1 7 2 6] [3 5 4 7 1 2 6] [3 5 7 4 1 2 6] [3 7 5 4 1 2 6] [7 3 5 4 1 2 6]

Any permutation of length n will yield n + 1 new permutations. Thus, all n!(n + 1) = (n + 1)! are
generated. We can make a tree starting from [1] to generate permutations. The start looks like:

[]

[1]

[1 2]

[1 2 3] [1 3 2] [3 1 2]

[2 1]

[2 1 3] [2 3 1] [3 2 1]

The key feature is that we can predict the number of children of any node: If it is a permutation of size
n, then it has n+ 1 children. Let k be the number of children of a given vertex. A permutation of size n
has n+ 1 children, hence label n+ 1. We know the label for each of the children, and we can list them
in the following notation, where the first component indicates the root.

We write this

[(1); {(k)→ (k + 1)(k + 1) · · · (k + 1)︸ ︷︷ ︸
k times

}] ≡ [[(0); {(k)→ (k + 1)k}].

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/3

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 17 Generating Trees

1.2 Generating Trees
Let us now generalize this idea.

Definition. A generating tree is a rooted labeled tree whose labels follow a specied rule of the form:

[(m); {(k)→ (a1(k)), (a2(k)), ..., (ak(k))}]

where the root of the tree has label m and for each node with label k, the node has k children whose
labels are respectively: a1(k), a2(k), . . . , ak(k).

Example (Fibonacci Numbers). If you think about the bunny interpretation of Fibonacci numbers (An
adult bunny (label 2) gives rise to a baby bunny (label 1) and continues on. A baby bunny grows up to
become an adult:

[(1); (1)→ (2), (2)→ (1)(2)]

Figure 2. A Fibonacci generating tree of height 10.

for i to nops(x) do

s := sprintf("%s%d", s, x[i]);

end:

return s;

end:

PermStep := proc(sigma)

local n, i, j;

n := nops(sigma);

return [seq([seq(sigma[j], j=1..i-1), n+1, seq(sigma[j], j=i..n)], i=1..n+1)];

end:

P := MakeGeneratingTree([], PermStep, 4, permPrinter):

DrawGraph(P, style = tree);

This draws the tree with permutations as labels. The example shows the utility of having the rule be a
function that takes any parameter, allowing us to functions that recursively generate whole combinatorial
classes. The example also uses a special printer function permPrinter that returns the permutation as a
word. The second parameter of the printer function is unsed because each permutation only appears once
in the generating tree.

draws [(0), (k) -> (k+1)^(k+1)]

G := MakeGeneratingTree(0, k -> [k+1$k+1], 4):

DrawGraph(G, style=tree);

This draws the tree with integer labels. This example shows how to create simple integer labeled trees.
By using , k -¿ [k+1$k+1]) for the rule. It uses defaultprinter for the printer function, which appends a ” -
n” to the end of each label. We can remove these manually in Maple before exporting.

For simple trees we can draw many levels. See the following example:

Example 2. Fibonacci numbers
Banderier et al. showed that the following generating tree gives rise to the Fibonacci numbers:

[(1), (1) ! (2), (2) ! (1)(2)]
4

Each vertex represents a bunny, and the bunnies at depth n represent the bunny population at time n.
The number of vertices on level i is Fi, the i-th Fibonacci number.

Example (Involutions). An involution is a permutation which is its own inverse.
We can generate involutions of size n + 1 by multiplying an involution, σ of size n, by any transpo-

sition (i, n + 1) where i is a fixed point of σ or by leaving n + 1 as a fixed point. Thus, the number of
children is one more than the number of fixed points. The involution created by adding a fixed point
has one additional fixed point, and the other children will have one fewer:

[(2); (k)→ (k + 1)(k − 1)k−1]

Figure 3. A generating tree for involutions.

We can draw this using the following Maple code:

draws a generating tree for Fibonacci numbers

fib := proc (x) if x = 1 then return [2] end if; return [1, 2] end proc:

F := MakeGeneratingTree(1, fib, 10):

DrawGraph(F, style = tree);

The resulting image is shown in Figure 2. The nodes have been deleted to make it easy to see the branches.

Example 3. Involutions
We can generate involutions of size n + 1 by multiplying an involution, σ of size n, by any (k, n + 1) where
k is a fixed point of σ or k = n + 1 ((k, n) written in cycle notation).

The rule follows:

[(1), {(σ) ! {τ : τ = σ ◦ (k, n + 1), k is a fixed point of σ}}].

A recursion similar to the one above was used in [3] to count the number of involutions avoiding long
monotonic sequences.

Finally, we can draw the tree using the following code:

draws a generating tree for involutions

InvolutionStep := proc(phi)

local i, j, perms, n, sigma, c, top, ntop, ind, cr2, ne2;

n := nops(phi);

5

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/3

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 17 Generating Trees

Example (Set Partitions). A set partition of X = {1, . . . , n} is a set of subsets of X which are disjoint
and whose union is X. For example {{1, 4}, {2}, {3}} is a set partition of {1, 2, 3, 4}. To save brackets we
can write this more compactly as 14− 2− 3.

Now for the generating tree. The label of a set partition is the number of parts. We create a set
partition of size n + 1 by taking a set partition π = π1|π2| . . . |πk of size n and either make a new part
consisting of n+ 1 alone, or we add n+ 1 to any of the blocks. Thus, the generation rule is:

π → (π1 ∪ {n+ 1}|π2| . . . |πk)(π1|π2 ∪ {n+ 1}| . . . |πk) . . . (π1|π2| . . . |πk−1|πk ∪ {n+ 1})(π|{n+ 1})}

The generating tree by number of children is

[(1); (k)→ (k)k−1(k + 1)]

Figure 4. A generating tree for set partitions.

return [op(list), [op(s), {n+1}]];

end:

setPrinter := proc(x, y)

local s := "", i, n;

n := nops(x);

for i to n - 1 do

s := sprintf("%s%s-", s, permPrinter(x[i]));

end:

if n > 0 then

s := sprintf("%s%s", s, permPrinter(x[n]));

else

s := "";

fi;

return s;

end proc:

S := MakeGeneratingTree({}, SetStep, 4, setPrinter):

DrawGraph(S, style = tree);

This example shows the power of the printer parameter to print elegant labels for the nodes. In this case
set partitions in canonical notation.

The output is shown in Figure 4.

Another application of generating trees in programming is random generation. Banderier et al. showed
that assuming one can compute all nodes in the mth level of a generating tree in a linear time of m then
one can generate a random node at level n in O(n3) time and O(n2) storage for the first generation [1].
Subsequent generations require O(n)2 time and storage [1].

4. Ordinary generating functions

Another application of generating trees is computing generating functions. This was the focus of [1].
Table 4 shows a subset of its findings in addition to m-ary words which will be discussed later in this section.

7

1.3 Generating trees to ogf
A key advantage of a generating tree approach, is that we can access the generating functions. We can
also predict some properties about the generating function. Let Fn be the number of elements at depth
n, and let F (z) =

∑
n Fnz

n.

Theorem. If finitely many labels appear in the tree, then F (z) is rational.

There are also conditions for algebraicity.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/3

