- faculty of science
department of mathematics
SFU ((p]l ment of mathematic LECTURE 18 The Knapsack problem

The Knapsack problem

Contents

1 The knapsack problem (Sec. 1.3)
1.1 A typical optimization problem

2 Backtracking Algorithms (Sec. 4.1)
2.1 A naive approach to the knapsack problem
2.2 First optimization: Pruning the infeasible solutions

W NN DO i

1 The knapsack problem (Sec. 1.3)

The knapsack problem is a key problem in combinatorial optimization. You have a set of objects, and
to each is associated a weight, and a value. You are about to set out travelling, and you cannot carry
more than a certain weight, say 15kg. The total weight of all of your objects is more than this. How do
you choose a subset of your objects so that their total value is maximized, and their total weight does

not exceed 15kg?
< ?
.

g

a3

)) =

This problem appears in many different formats and variations in resource allocation, cryptography,
combinatorics, complexity theory..

There are several variants of the problem. For each of the following, assume there are n items, that
the weight of item i is w;, and that the value of item i is v;. The capacity of the backpack is M. We
represent a backpack configuration by an n-tuple [z, o, ..., z,] € {0,1}" such that z; = 1 if and only if
item i is in the backpack.

Decision Given target value V, does there exist a configuration [x1, 23, ..., z,] € {0,1}" such that

n
Z VL5 Z \%4
=1

and .
i=1
Search Given target value V find a configuration [x1,xs,...,x,] € {0,1}" such that
n
Z (s Z 1%
i=1
subject to

n
i=1

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/4

- faculty of science
department of mathematics
SFU ((p]l ment of mathematic LECTURE 18 The Knapsack problem

Optimal Value Find the maximum value V such that

n
Z VT4 Z 1%
i=1

and

n
i=1

Optimization Find the configuration [z1,z5,...,z,] € {0,1}" such that

Zvixi Z 14
i=1
is optimized subject to

n
i=1

1.1 A typical optimization problem

This example bears many of the typical features of an optimization problem. There are constraints to
be satisfied. Any n-tuple which satisfies them is a feasible solution. Associated to each feasible solution
is an objective function, which takes the value of an integer or real number typically thought of as
either the cost or profit. The object of an optimization problem is to find a feasible solution that attains
the maximum possible profit, or incurs the minimum possible cost.

2 Backtracking Algorithms (Sec. 4.1)

A backtracking algorithm is a recursive method to build up feasible solutions to a combinatorial opti-
mization problem one step at a time. You can view a backtracking algorithm as an exhaustive search
amongst all feasible solutions to find the optimal solution. Very often the set of feasible solutions is
very large, and hence we would like to avoid considering feasible solutions that are clearly not optimal.
We will do this by pruning the set of solutions we consider, and this will be the first strategy. Let us see
how it works in practice.

2.1 A naive approach to the knapsack problem

We are pros at listing all binary strings at this point. We could simply list all binary strings and iterate
through all possible 2" binary strings of length n, each time computing the constraint Y . | w;z; < M
to see if it is feasible and then compute the value of the objective function > ; v;z; and compare to the
best so far.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/4

- faculty of science
F department of mathematics
S U LECTURE 18

The Knapsack problem

Naive Knapsack solution

knapsac:= proc (m)

global x // current feasible solution built up one digit at a time
optX // current optimum solution
optV // current optimum value

local curP // current value

if m=n then // determine the current value against optimum value
if add(wixxi, i=1..n) <= M // current x is feasible

curV:= add(vixxi, i=1..n)

if curV > optV // a more optimal solution!
optV:= curV
optX:=x

else // we are only partway through processing the string
xm:= 1
knapsac (m+1)
xm:= 0
knapsac (m+1)
end proc;

The algorithm is invoked with knapsack (0) and at the end of the run the global variable optX con-
tains the optimum solution and optV will have the optimum value of the objective function.

The state space of the algorithm is all of the values that are generated. For this case, we represent
it with a state space tree which is traversed in a depth first search in the course of the algorithm:

///////H\\\\\\\m
NN

} (0,1]

AVAYRYATA

[1,1,1] [1,1,0] [1,0,1] [1,0,0] [0,1,1] [[0,0,1] [0,0,0]

This algorithm checks all of the strings and takes ©(n) time to process each string, so the total run
time is ©(n2"), which is exponential, and not suitable for large n.

2.2 First optimization: Pruning the infeasible solutions

This algorithm is calling out for at least a simple modification. We would like to test feasibility of some
inner node, before we recurse on its children. For example, if we have partially built a solution, say
[z1,..., %) such that m < n, and we know already that) ;" , w;z; > M, we do not need to continue to
add elements and test configurations; the bag is already too heavy! We assume in this example that
items have a non-negative weight, so there is no item we can add that will bring the weight back down.
We prune the search tree and do not consider descendants of this element.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/4

faculty of science
SF l department of mathematics

LECTURE 18 The Knapsack problem

Optimized Knapsack solution

oknapsac:= proc (m, curW)

global x // current feasible solution built up one digit at a time
optX // current optimum solution
optV // current optimum value
Cm// value of the first m elements in x

local curV // current value

if m=n+l1 then // determine the current value against optimum value
if add(wi*xi, i=1..n) <= M // current x is feasible
curV:= add(vi*xi, i=1..n)
if curv > optvVv // a more optimal solution!
optV:= curV
optX:=x
Cm:={} // we are done, and the recursive call below will be
empty.
else // we are only partway through processing the string
if curW+wm <= M then // still feasible!

Cm:= {1,0} // check both children in the search tree
else

Cm:= {0}
for d in Cm do
xm:= d
oknapsac (m+1l, curW+wmxm)

end proc;

This is serves as a general template for an optimization problem. Our search space may be bigger
than simply binary strings, and it is left as an exercise to see how to write a generic algorithm. (See
Algorithm 4.2 in the Kreher and Stinson Combinatorial Algorithms).

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/4

