
Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 20 Bounding functions

Bounding functions

Contents
1 Bounding functions 1

2 Bounding for the Knapsack problem 2
2.1 Rational Knapsack problem . 2
2.2 Bounded Knapsack . 2

3 Travelling Salesman Problem 3
3.1 Problem statement . 3
3.2 Naive backtracking solution . 4
3.3 Min cost bound . 5

1 Bounding functions
(see Donald Kreher and Douglas Stinson, Combinatorial Algorithms, section 4.6 for a reference on this
material)

The pruning we’ve done so far was not very powerful. We need a framework in which to discuss
better pruning. We’ll do this with bounding functions

We need some vocabulary

Definition. Given a feasible solution X, let profit(X) be the profit of X.
Given a partial feasible solution X, let P (X) be the maximum profit of any descendant of X in the

state space tree.

Note that P (∅) is the optimal profit for the problem.
It is too slow to calculate P (X) exactly – in general you need to traverse the whole subtree rooted

at X, so what we want is to approximate P (X) with something easier to compute

Definition. Let B be a function from the set of vertices of the state space tree to the positive integers.
Suppose that for any partial solution X

B(X) ≥ P (X)

then we say B is a bounding function.

The point is that if we are at vertex X in a backtracking algorithm and we find that P (X) ≤ OptP,
the optimal profit so far, then we have

P (X) ≤ B(x) ≤ OptP

so the subtree rooted at X can’t improve the optimal profit and hence can be pruned away. A good
bounding function is

• close to P (X)

• easy to compute

These two features must be balanced.
This gives us a meta algorithm

Meta algorithm: BoundedBacktrack
global: X, OptP, OptX, C
input: l
if [x(0),...,x(l-1)] is feasible

P = profit([x(0),...,x(l-1)]
if P > OptP

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 20 Bounding functions

OptP = P
OptX = [x(0),...,x(l-1)]

Compute C(l)
B = B([x(0),...,x(l-1)])
if B <= OptP

return
for x(l) in C(l)

BoundedBacktrack(l+1)

Note the above is phrased for maximizing (profit) problems. For minimizing (cost) the inequalities
need to be flipped in the definitions of P (X) and B(X) and in the algorithm.

2 Bounding for the Knapsack problem
2.1 Rational Knapsack problem
To find a good bounding function for the Knapsack problem consider a related problem: Suppose you
are given profits p0, . . . , pn−1, weights w0, . . . , wn−1, and capacity M as in the Knapsack problem; find
the maximum value of

n−1∑
i=0

pixi

subject to
n−1∑
i=0

wixi ≤M

with the xi rational numbers 0 ≤ xi ≤ 1. This is called the Rational Knapsack Problem. The key
difference is that the xi can be rational numbers rather than just 0 or 1. This change makes a big
difference in how easily the problem can be solved. Now we can just take a greedy approach.

Algorithm: RationalKnapsack
input: p(0),...,p(n-1),w(0),...w(n-1),M

permute the indices so p(0)/w(0) >= p(1)/w(1) >= ... >= p(n-1)/w(n-1)
i=0
P=0
W=0
X=[0,0,...,0] (length n, indexed from 0 to n-1)
while W<M and i<n

if W+w(i) <= M
x(i)=1
W = W+w(i)
P = P+p(i)
i = i+1

else
x(i) = (M-W)/w(i)
W = M
P = P+x(i)p(i)
i = i+1

return P

This algorithm runs in linear time.

2.2 Bounded Knapsack
We can use the rational knapsack problem to give a bounding function for our original knapsack prob-
lem.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 20 Bounding functions

Definition. For a partial solution X = [x0, . . . , xl−1] to the Knapsack problem, define

B(X) =

l−1∑
i=0

pixi + RationalKnapsack(pl, pl+1, . . . , pn−1, wl, wl+1, . . . , wn−1,M −
l−1∑
i=0

wixi)

The first sum captures the profit of the partial solution. If xi in the rest were each 0 or 1 then we’d
have the profit of a descendant of X. Allowing rational values may make a larger profit possible but
can’t make the profit worse, so

B(X) ≥ P (X)

so B defines a bounding function. B is fast to compute since the rational knapsack algorithm is fast.
This gives the following algorithm

Algorithm: BoundedKnapsack
global: X, OptX, OptP, C
assume the p(i), w(i) are ordered so p(0)/w(0) >= p(1)/w(1) >= ... >= p(n-1)/w(n-1)

input: l, CurW
if l=n

if sum(p(i)x(i), i=0..n-1) > OptP
OptP = sum(p(i)x(i), i=0..n-1)
OptX = [x(0),...,x(n-1)]

return
else

if CurW + w(l) <= M
C(l) = {0,1}

else
C(l) = {0}

B = sum(p(i)x(i), i=0..l-1) + RationalKnapsack(p(l),...,p(n-1),w(l),...,w(l-1),M-CurW)
if B <= OptP

return
for x(l) in C(l)

BoundedKnapsack(l+1,CurW+w(l)x(l))

This algorithm is a substantial practical improvement over what we had before. Figure 1 shows
some experimental data from Kreher and Stinson. Algorithm 4.1 is the naive Knapsack algorithm.
Algorithm 4.3 is our first attempt at pruning (from last lecture). Algorithm 4.9 is the algorithm we just
developed. The instances were generated by for each i randomly selecting wi an integer between 0 and
1 000 000 and then choosing pi = 2wiεi where εi is random in the interval (0.9, 1.1), and

M =
1

2

n−1∑
i=0

wi

These choices were made to generate instances which are hard for the algorithm to solve.

3 Traveling Salesman Problem
The Travel-ling Salesman Problem is another classic optimization problem.

3.1 Problem statement
Suppose there are n cities and different costs to fly between them. You want to begin at your current
city, visit all the other cities and return home. Which order minimizes the cost.

We might as well assume that travel between any two cities is possible (though perhaps at high
cost), so the formal problem statement is as follows:

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 3/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 20 Bounding functions

Figure 1: From Kreher and Stinson p127

Given a complete graph G = (V,E) with V = {1, . . . , n} and a cost function

cost : E → Z>0

Find a Hamiltonian cycle X of G such that

cost(X) =
∑
e∈X

cost(e)

is minimized.

3.2 Naive backtracking solution
Without loss of generality we can take our cycles beginning at 0. We still get each cycle twice, once
going around one way and once the other way. We’ll represent the Hamiltonian cycles, and the partial
solutions, as lists of vertices.

Algorithm: NaiveTravelingSalesman
global: X, OptC, OptX, C
input: l
if l=n

C = cost([x(0),...,x(n-1)] (as a cycle)
if C < OptC

OptC = C
OptX = [x(0),...,x(n-1)]

return
if l=0

C(l)={0}
if l=1

C(l)={1,...,n-1}
else

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/5

Week Date Sections
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial
parameters
FS A.III
(self-study)

Combinatorial
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures
and Limit Laws
FS: Part C
(rotating
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

f acul ty of sc ience MATH 895-4 Fall 2010
depar tment of mathemat ics Course ScheduleLECTURE 20 Bounding functions

C(l)=C(l-1)-{x(l-1)}
for x(l) in C(l)

NaiveTravelingSalesman(l+1)

3.3 Min cost bound
Now lets do better with a bounding function. In this problem we are minimizing cost rather than
maximizing profit so the bounding function must be a lower bound on the cost.

Definition. Given a graph and edge costs as above, and given x ∈ V , W ⊆ V , W 6= ∅ define

b(x,W) = min{cost(x, y) : y ∈W}

Proposition. Given a graph and edge costs as above. Let X ′ = [x(0), . . . , x(n− 1)] be the ninimim cost
Hamiltonian cycle which extends [x(0), . . . , x(l − 1)] (with l < n). Then

cost(X ′) ≥
l−2∑
i=0

cost(xi, xi+1) + b(xl−1, Y) +
∑
y∈Y

b(y, Y ∪ {x0})

where Y = V \ {x0, . . . , xl−1}

Proof. For convenience let xn = x0. Then

cost(X ′) =
n−1∑
i=0

cost(xi, xi+1)

=

l−2∑
i=0

cost(xi, xi+1)︸ ︷︷ ︸
cost of part

already chosen

+ cost(xl−1, xl)︸ ︷︷ ︸
l<n so
xl∈Y

+

n−1∑
i=l

cost(xi, xi+1)︸ ︷︷ ︸
{xl,...,xn−1}=Y

≥
l−2∑
i=0

cost(xi, xi+1) + b(xl−1, Y) +
∑
y∈Y

b(y, Y ∪ {x0})

This bounding function is called the min cost bound. It gives an algorithm
Algorithm: MinCostBoundTravelingSalesman

global: X, OptC, OptX, C
input: l
if l=n

C = cost([x(0),...,x(n-1)] (as a cycle)
if C < OptC

OptC = C
OptX = [x(0),...,x(n-1)]

return
if l=0

C(l)={0}
else

if l=1
C(l)={1,...,n-1}

else
C(l)=C(l-1)-{x(l-1)}

B = MinCostBound(x(0),...,x(l-1))
if B >= OptC

return
for x(l) in C(l)

MinCostBoundTravelingSalesman(l+1)

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 5/5

