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1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due
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Appendix B4
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IV.5 V.1
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10
9 VI.1 Sophie
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and Limit Laws
FS: Part C
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presentations)

Introduction to Prob. Mariolys
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18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie
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23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie
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Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 21 Better bounding

Better bounding

Contents
1 Recall 1

1.1 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Naive backtracking solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Min Cost Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Even better bounding functions 2
2.1 A better bounding function for the Traveling salesman problem . . . . . . . . . . . . . . . 2
2.2 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Heuristic search 5
3.1 Hill climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Recall
1.1 Traveling Salesman Problem
Given a complete graph G = (V,E) with V = {1, . . . , n} and a cost function

cost : E → Z>0

Find a Hamiltonian cycle X of G such that

cost(X) =
∑
e∈X

cost(e)

is minimized.

1.2 Naive backtracking solution
Algorithm: NaiveTravelingSalesman

global: X, OptC, OptX, C
input: l
if l=n

C = cost([x(0),...,x(n-1)] (as a cycle)
if C < OptC

OptC = C
OptX = [x(0),...,x(n-1)]

return
if l=0

C(l)={0}
if l=1

C(l)={1,...,n-1}
else

C(l)=C(l-1)-{x(l-1)}
for x(l) in C(l)

NaiveTravelingSalesman(l+1)

1.3 Min Cost Bound
Definition. Given a graph and edge costs as above, and given x ∈ V , W ⊆ V , W 6= ∅ define

b(x,W ) = min{cost(x, y) : y ∈W}
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Proposition. Given a graph and edge costs as above. Let X ′ = [x(0), . . . , x(n− 1)] be the ninimim cost
Hamiltonian cycle which extends [x(0), . . . , x(l − 1)] (with l < n). Then

cost(X ′) ≥
l−2∑
i=0

cost(xi, xi+1) + b(xl−1, Y ) +
∑
y∈Y

b(y, Y ∪ {x0})

where Y = V \ {x0, . . . , xl−1}
Algorithm: MinCostBoundTravelingSalesman

global: X, OptC, OptX, C
input: l
if l=n

D = cost([x(0),...,x(n-1)] (as a cycle)
if D < OptC

OptC = D
OptX = [x(0),...,x(n-1)]

return
if l=0

C(l)={0}
else

if l=1
C(l)={1,...,n-1}

else
C(l)=C(l-1)-{x(l-1)}

B = MinCostBound(x(0),...,x(l-1))
for x(l) in C(l)

if B >= OptC
return

MinCostBoundTravelingSalesman(l+1)

2 Even better bounding functions
(see Donald Kreher and Douglas Stinson, Combinatorial Algorithms, sections 4.6 and 4.7 for a reference
on this material)

2.1 A better bounding function for the Traveling salesman problem
Definition. Given an instance of the Traveling salesman problem with graph G, let M be the matrix
whose i.j entry is∞ if i = j and is the cost of the edge {i, j} otherwise.

For example if we have the graph with vertices 0, 1, 2, 3 and weights
edge cost
01 3
02 5
03 8
12 2
13 7
23 8

then

M =


∞ 3 5 8
3 ∞ 2 7
5 2 ∞ 6
8 7 6 ∞


Here is an algorithm which finds the smallest element in each row, and subtracts that amount from

each entry in the row, and then does the same thing on the columns. The output is the sum of all the
smallest elements.
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Algorithm: Reduce
input: M (m by m matrix)
val = 0
for i from 0 to m-1

min = M(i,0)
for j from 1 to m-1

if M(i,j) < min
min = M(i,j)

for j from 0 to m-1
M(i,j) = M(i,j) - min

val = val + min
for j from 0 to m-1

min = M(0,j)
for i from 1 to m-1

if M(i,j) < min
min = M(i,j)

for i from 0 to m-1
M(i,j) = M(i,j) - min

val = val + min
return val

Definition. With M as in the previous definition, the cost of M is the output of the Reduce algorithm.

Continuing the previous example, the rows contribute 3+2+2+6 = 13 to the cost leaving the matrix
∞ 0 2 5
1 ∞ 0 5
3 0 ∞ 4
2 1 0 ∞


and so the columns contribute 1 + 0 + 1 + 4 = 6 to the cost, for a total cost of 19.

This matrix cost is a bounding function for the Traveling salesman problem:

Proposition. Let M be the matrix for an instance of the Traveling salesman problem and let G be the
graph of the instance. Let X be any Hamiltonian cycle of G, then

Reduce(M) ≤ cost(X)

Where we recall from last time that the cost of a Hamiltonian cycle is the sum of the costs of the
edges making it up.

Proof. Let X = [x0, . . . , xn−1] be a Hamiltonian cycle gives as a list of vertices and let xn = x0. Then

cost(X) = M(x0, x1) +M(x1, x2) + · · ·+M(xn−2, xn−1) +M(xn−1, xn)

which uses one entry from each row and column of M .
Let

ri = min{M(i, j) : 0 ≤ j ≤ n− 1}
cj = min{M(i, j)− ri : 0 ≤ i ≤ n− 1}

Then the cost of M is
n−1∑
i=0

(ri + ci)

and
rxi

+ xxi+1
≤M(xi, xi+1)

so
Reduce(M) ≤ cost(X)
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In the running example the Hamiltonian cycles are

Hamiltonian cycle cost
0123 3+2+6+8 = 19
0132 3+7+6+5 = 21
0213 5+2+7+8 = 22

while the

cost of M we calculated above to be 18, so we see this bound isn’t tight but it is pretty good.
Next let us write the bounding function based on Reduce, and then the backtrack algorithm using

it:
Algorithm: ReduceBound

input M (m by m matrix), X, G=(V,E)
if m=n

return cost(X) (as a Hamiltonian cycle)

(build the M for the smaller problem)
M’(0,0) = infinity
Y = V - {x(0), ... , x(m-1)}
j=1
for y in Y

M’(0,j) = M(x(m-1),y)
j = j+1

i=1
for x in y

M’(i,0) = M(x, x(0))
j=1
for y in Y

M’(i,j) = M(x,y)
j = j+1

i = i+1
ans = Reduce(M’, [x(0),...,x(m-1)], V)

(add in the cost of the partial solution)
for i from 1 to m-1

ans = ans + M(x(i-1), x(i))

return ans

Algorithm: ReduceTravelingSalesman
global: X, OptC, OptX, C
input: l
if l=n

D = cost([x(0),...,x(n-1)] (as a cycle)
if D < OptC

OptC = D
OptX = [x(0),...,x(n-1)]

return
if l=0

C(l)={0}
else

if l=1
C(l)={1,...,n-1}

else
C(l)=C(l-1)-{x(l-1)}

B = ReduceBound(x(0),...,x(l-1))
for x(l) in C(l)

if B >= OptC
return

ReduceTravelingSalesman(l+1)
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2.2 Branch and Bound
As we noticed in the knapsack problem, the order in which we recurse on the elements of C` can make a
big difference. We can use the bounding function to make a good choice. When we are at node X in the
state space tree, calculate B(X ′) for every child X ′ of X. For a maximizing problem (like the knapsack
problem), make the recursive calls in decreasing order of B(X ′). For a minimizing problem (like the
traveling salesman problem), make the recursive calls in increasing order of B(X ′). This way we are
likely to get the most pruning.

For the traveling salesman the algorithm will look like
Algorithm: BranchandBoundTravelingSalesman

global: X, OptC, OptX, C
input: l
if l=n

D = cost([x(0),...,x(n-1)] (as a cycle)
if D < OptC

OptC = D
OptX = [x(0),...,x(n-1)]

return
if l=0

C(l)=[0]
else

if l=1
C(l)=[1,...,n-1]

else
C(l)=C(l-1) with x(l-1) removed

B(l) = [];
for x in C(l)

append bound(x(0),...,x(l-1),x) to B(l) (use your favorite bounding function)
sort B(l) in increasing order
put C(l) in the corresponding order
for i from 0 to |C(l)|-1

if B(l)(i) >= OptC
return

x(l) = C(l)(i)
ReduceTravelingSalesman(l+1)

Kreher and Stinson ran the naive traveling salesman, the bounded traveling salesman with both
the min cost bound and the reduce bound, and the branch and bound traveling salesman with both
bounds, on random instances of the problem with edges costs random integers between 0 and 100. The
results were (table from p134 and p143). Algorithm 4.10 is the naive backtrack, Algorithm 4.13 is the
bounded backtrack and Algorithm 4.23 is the branch and bound algorithm. The values in the table are
the sizes of the state space trees.

3 Heuristic search
Sometimes even good bounding is too slow. How can we explore the state space faster, perhaps just
finding a close to optimal solution rather than an optimal solution.
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Definition.

• The universe X is a finite set of elements which are possible (not necessarily feasible) solutions

• X ∈ X is feasible if it satisfies the constraints of the problem

• P (X) is the profit of X

• A neighbourhood function is a function

N : X → 2X

where 2X is the set of all subsets of X .

• Given N , a neighbourhood search is an algorithm, possible randomized, which takes a feasible
solution X ∈ X and returns either a feasible solution Y ∈ N(X) \ {X} or fail

The idea is that if we are at a feasible solution, then we consider its neighbourhood, and following
the neighbourhood search algorithm we update X to Y (or we fail).

For the knapsack problem we could take X = {0, 1}n the set of all binary strings of length n. A
reasonable neighbourhood function would be

N(X) = {Y ∈ X : d(X,Y ) ≤ c}

for some fixed c, where d(X,Y ) is the Hamming distance between X and Y .
Possible neighbourhood search strategies include

• Find a feasible solution Y ∈ N(X) such that P (Y ) is maximized. Fail if there are no feasible
solutions in N(X).

• Find a feasible solution Y ∈ N(X) such that P (Y ) is maximized. If P (Y ) > P (X) return Y ,
otherwise fail.

• Choose a random solution in N(X) return it if it is feasible, otherwise fail (or perhaps try a fixed
number of times).

• Choose a random solution Y in N(X) return it if P (Y ) > P (X), otherwise fail (or perhaps try a
fixed number of times).

More sophisticated heuristic searches may use a combination of approaches.

3.1 Hill climbing
Hill climbing is the simplest heuristic search. Hill climbing is when, as in points 2 and 4 above, we
always choose a solution which increases the profit. For many applications this is too naive because
it can get stuck in a local maximum which may be quite far from optimal. The basic shape of the
algorithm is as follows

Algorithm: GenericHillClimbing
Select a feasible X in the universe
searching = true
while searching

try to get a feasible solution Y in N(X) with P(Y) > P(X) (randomly or exhaustively)
if Y = fail

searching = false
else

X = Y
return X
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