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1 Partial fractions
1.1 Relevant facts about polynomials
Partial fractions is useful whenever you want to reduce a rational function (that is one polynomial
divided by another) to a sum of minimal pieces. We first need two facts about polynomials (see MATH
340 for proofs). For those with some field theory, fix a field and view all polynomials, factors, etc below
as over that field.

By convention we will say that the degree of the constant zero polynomial is −∞.

Proposition (Division algorithm for polynomials). Let f and g be polynomials. Then there exist poly-
nomials q and r with deg r < deg g and

f(x) = g(x)q(x) + r(x)

The proof is by long division.

Proposition (Extended Euclidean algorithm for polynomials). Let f and g be polynomials with no
common factor then there exist polynomials h and t such that

f(x)h(x) + g(x)t(x) = 1

The proof of this is too involved to summarize in a sentence, but it works the same way as the ex-
tended Euclidean algorithm for integers, and, as in that case, it yields a good algorithm. In general the
algorithm is O(n2) where n is the maximum degree of f and g, but key parts of it, which are sufficient
for many purposes, are faster (see http://planetmath.org/encyclopedia/HalfGCDAlgorithm.
html).

1.2 The partial fractions theorem
Now we are ready for the partial fraction decomposition, first for two factors and then in general. You
can find many presentations of this result online, this presentation is based on http://marasingha.
org/mathspages/partialfrac/html/node2.html.

Proposition. Let f1, f2, and g be polynomials such that f1 and g1 have no common factor and deg g <
deg f1 + deg f2. Then we can find polynomials g1 and g2 with

g(x)

f1(x)f2(x)
=
g1(x)

f1(x)
+
g2(x)

f2(x)

and deg g1 < deg f1, deg g2 < deg f2.

Proof. By the extended Euclidean algorithm we can find polynomials h1 and h2 such that

1 = f1(x)h2(x) + f2(x)h1(x)

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 1/4



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 3 Partial Fractions

Thus
g(x) = f1(x)(h2(x)g(x)) + f2(x)(h1(x)g(x))

By the division algorithm we can also write

h1(x)g(x) = f1(x)q(x) + g1(x)

where deg(g1) < deg(f1). Let
g2(x) = h2(x)g(x) + q(x)f2(x)

then

g(x) = f1(x)g2(x)− f1(x)f2(x)q(x) + f2(x)f1(x)g(x) + f2(x)g1(x)

= f1(x)g2(x) + f2(x)g1(x)

so
g1(x)

f1(x)
+
g2(x)

f2(x)
=
f2(x)g1(x) + f1(x)g2(x)

f1(x)f2(x)
=

g(x)

f1(x)f2(x)

It remains to show that deg(g2) < deg(f2). Towards a contradiction suppose that deg(g2) ≥ deg(f2).
Then

deg(f1g2) ≥ deg(f1f2)

but
deg(f2g1) < deg(f1f2)

So in f1(x)g2(x) + f2(x)g1(x) the f1g2 term dominates, so

deg(g) = deg(f1g2 + f2g1) = deg(f1g2) ≥ deg(f1f2) = deg f1 + deg f2

which is a contradiction, completing the proof.

Theorem (partial fraction decomposition). Let f and g be polynomials and write f = fa1
1 · · · far

r where
fi and fj have no common factors for all i 6= j. Suppose deg g < deg f , then we can write

g(x)

f(x)
=

r∑
i=1

ar∑
j=1

gij(x)

(fi(x))r

for some polynomials gij with deg gij < deg fi.

Proof. By the proposition applied r − 1 times we an write

g(x)

f(x)
=

r∑
i=1

hi(x)

(fi(x))ai

with deg(hi) < deg(fai
i ) = ai deg(fi). (Just this much is enough for the application we have in mind

below).
To continue the proof consider

hi(x)

fi(x)ai
.

If ai = 1 then we’re done with this value of i. Assume ai > 1. By the division algorithm

hi(x) = q(x)fi(x) + r(x) (1)

with deg r < deg fi. Therefore
hi(x)

fi(x)ai
=

q(x)

fi(x)ai−1
+

r(x)

fi(x)ai
(2)

Furthermore either q = 0 or q(x)fi(x) is the dominant term in (1) in which case deg hi = deg qfi =
deg q + deg fi. But deg hi < ai deg fi so deg q < (ai − 1) deg fi. Thus repeating (2) inductively we get the
desired decomposition.

i was arbitrary and so the result follows.
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Example. Rewrite x
(x+1)(x−1)2 by partial fractions:

By the above theorems we know this can be written

x

(x+ 1)(x− 1)2
=

A

x+ 1
+

B

x− 1
+

C

(x− 1)2

How should we find A, B, and C? We could follow the proof and use the Euclidean algorithm, but for
small hand examples it is usually easier to multiply out

x = A(x− 1)2 +B(x+ 1)(x− 1) + C(x+ 1)

= A(x2 − 2x+ 1) +B(x2 − 1) + C(x+ 1)

Now this must be true for all x, so it must be true coefficient by coefficient. That is

0 = A−B + C coefficient of x0

1 = −2A+ C coefficient of x

0A+B coefficient of x2

This is a system of linear equations which you can solve by your favorite method, say Gaussian elimi-
nation  1 −1 1 0

−2 0 1 1
1 1 0 0

→
1 −1 1 0
0 −2 3 1
0 2 −1 0

→
1 −1 1 0
0 −2 3 1
0 0 2 1


→

1 0 0 − 1
4

0 1 0 1
4

0 0 1 1
2


Thus

x

(x+ 1)(x− 1)2
= − 1

4(x+ 1)
+

1

4(x− 1)
+

1

2(x− 1)2

1.3 Algorithmic concerns
What is the runtime of partial fractions? If we do it by solving the system of equations then the system
of equations is n× n where n = deg(f). By Gaussian elimination this is O(n3).

Strassen’s algorithm lets one multiply two n× n matrices in O(n2.81); it also gives a matrix inverse
in the same time, and hence a system solve in the same time. There have been improvements along
similar lines and the current best matrix multiplication is O(n2.3727) (according to Wikipedia). However
Strassen’s algorithm is only faster than a well optimized naive approach for n > 1000 and the newer
ones are impractical for any matrix you could actually store in a current computer. Certainly no such
approach could be better than O(n2) since one needs to use all n2 coefficients of the matrix.

However partial fractions has more structure. The proof suggests a different algorithm, one using
the extended Euclidean algorithm. In fact partial fractions doesn’t even need the full power of the
extended Euclidean algorithm, and so with this basic approach and some additional cleverness one can
obtain O(log nM(n)) where M(n) is the runtime needed to multiply two (slightly special) polynomials
of degree n. Naively M(n) would be n2, which already gets us better that the system solving approach,
but using fast fourier transforms one can obtain M(n) = O(n log n) and hence partial fractions can be
done in O(n(log n)2). The details of all of this are beyond the scope of this course. Reference for the
algorithm: Kung, H. T. and Tong, D. M., ”Fast algorithms for partial fraction decomposition” (1976).
Computer Science Department. Paper 1675. http://repository.cmu.edu/compsci/1675.

One final algorithmic concern. What if the factorization of f is not given? This is a whole different
story; fast polynomial factorization, say over the rationals, is done by looking modulo primes and then
putting it back together. The good news is that it is polynomial time. In the case we’re interested in we
want to factor down to linear factors so we actually need to factor over the complex numbers, but not
all polynomials can have their roots expressed in terms of square roots, cube roots etc, which leads in
to the very interesting world of Galois theory.
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1.4 Algorithm for coefficient extraction in rational functions
From the coefficient extraction theorems, we can compute [zn] 1

(1−mz)r = mr
(
r+n−1

n

)
for real numbers m

and r. Let us reduce the computation of coefficient extraction for rational functions to these kinds of
terms.

1. Partial fraction Decomposition Simplify the form of the rational function. This is the most com-
putationally intensive part of the computation. Here αi,k(z) is a polynomial of degree less than k.
The

R(z) =
∑
i,k

αi,k(z)

(1−miz)k

2. Separate Use sum rule to separate into terms of the form [zn](1−mz)k.

3. Apply the binomial theorem Compute these values

4. Sum Take the sum of the resulting terms.

Example (Simple rational example). Let R(x) = 2 x2−4 x+1
1−18 x+129 x2−460 x3+816 x4−576 x5 . Compute [xn]R(x).

1. First we compute that

2x2 − 4x+ 1

1− 18x+ 129x2 − 460x3 + 816x4 − 576x5
=

−16
(1− 4x)

+
12

(1− 3x)
+

2

(1− 4x)
3 +

3

(1− 3x)
2 .

We can use several techniques to do this manually, or the Maple command convert(R(x),
parfrac).

2. We expand and solve.

[xn]R(x) = [xn]
−16

(1− 4x)
+

12

(1− 3x)
+

2

(1− 4x)
3 +

3

(1− 3x)
2

= −16[xn] 1

1− 4x
+ 12[xn]

1

1− 3x
+ 2[xn]

1

(1 + (−4x))3
+ 3[xn]

1

(1 + (−3x))2

= −16 · 4n + 12 · 3n + 2

(
−3
n

)
(−1)n(−4)n + 3

(
−2
n

)
(−1)n(−3)n

= −16 · 4n + 12 · 3n + 2 · 4n
(
n+ 2

2

)
+ 3n+1

(
n+ 1

1

)
= (−16 + (n+ 1)(n+ 2)) · 4n + (12 + 3(n+ 1)) · 3n.
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