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1 Recall
Definition. The ordinary generating function (OGF) of a sequence (An) is the formal power series

A(z) =

∞∑
n=0

Anz
n.

We extend this to say that the ogf of a class A is the generating function of its counting sequence
An = cardinality(An). Equivalently, we can write the OGF as

A(z) =
∑
α∈A

z|α|.

In this context we say that the variable z marks the size of the underlying objects.

Two formal power series facts that we shall use: Multiplication rule:(∑
Anz

n
)(∑

Bnz
n
)

=
∑
n

(
n∑
k=0

AkBn−k

)
zn

Quasi-inverse: If A(z) is such that A0 = 0, then

1 +A(z) +A(z)2 +A(z)3 +A(z)4 + · · · = 1

1−A(z)
.

2 A calculus for combinatorial classes
2.1 The basic idea: Union ≡ sum
Our approach builds up a new class from existing classes, and translates counting information at the
same time. A simple example of this principle is as follows. Imagine class A and class B have empty
intersection, and that we know everything about them. What can we say about C, if it is the union of
these two classes:

C = A ∪ B?

In particular, Cn = An ∪ Bn, and hence Cn = An + Bn. This only works if the union is disjoint, i.e.
A ∩ B = ∅, but when this does hold, no further information is needed about A or B. We translate
the structural information about C into counting information about C. Similarly, to describe a random
generation scheme for C, it is sufficient to have one for A and B, and a way to choose which one to have
an element from. But we are getting ahead of ourselves.
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2.2 Admissible constructions
Now we build a toolbox of standard constructions. In each case we want the property that the counting
information is a function of the construction and the counting sequences of the inputs, but nothing else.
We can define a small set of constructions from which we can derive a remarkable number of objects of
interest.

Our toolbox of combinatorial constructions will include the following kinds of operations:

• union;

• cartesion product;

• sequence;

• set and multiset;

• cycle;

• pointing and substitution.

These “admissable constructions” will translate directly to simple (and not so simple) operations on the
generating functions.

First, a technical definition which formalizes the above intuition.

Definition. Let Φ be an m-ary construction that associates to any collection of classes B(1), ...B(m) a
new class A = Φ[B(1), ...B(m)]. The construction Φ is admissible iff the counting sequence (An) only
depends on the counting sequences (B

(1)
n , . . . , B

(m)
n ).

Given an admissible construction Φ, there exists a well-defined operator Ψ acting on the correspond-
ing ordinary generating functions: A(z) = Ψ[B(1)(z), ..., B(m)(z)].

Our constructions will be mechanical, but they will have a natural bijection with the desired class.

2.2.1 Bijective combinatorics

Enumeration is also important because it may help us recognize two classes that are essentially the
same.

Definition. Two classesA,B are said to be combinatorially isomorphic, writtenA ∼= B iff their counting
sequences are the same. Note that A ∼= B iff there is a size-preserving bijection between A and B.

There are many beautiful results in combinatorics resulting from the construction of bijections be-
tween seemingly disparate classes of objects. This “bijective” school of combinatorics is championed by
the french.

Us, we will describe classes that will be in very natural bijections with the objects we are truly
interested in.

2.3 Cartesian Product
The easiest of these is the construction based on the cartesian product

Definition. The cartesian product construction applied to two classes B, C forms ordered pairs,

A = B × C iff
A = {α = (β, γ)|β ∈ B, γ ∈ C}

where the size of a pair is additive, namely

|α|A = |β|B + |γ|C .
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By considering all possible pairs we see that the counting sequences satisfy

An =

n∑
k=0

BkCn−k

which is exactly the product of the generating functions

A(z) = B(z) · C(z).

Since the counting sequence (An) depends only the sequences (Bn) and (Cn) (and not any other infor-
mation) we see that the cartesian product is admissible and it translates as a product of OGFs.

Exercise. Verify that the set A defined as A = B×C is a well-defined as a combinatorial class. Under-
stand why cartesian product is an admissible operator.

Example. Consider the class of binary strings with a break, or bookmark somewhere in the string,
possibly at the beginning or the end. Length is still the number of 1s plus the number of 0s. For
example 100101∨100100. We can model this by a cartesian product of binary strings: 100101∨100100 ≡
(100101, 100100). Here the length is additive. Thus, this class is equivalent to V ≡ W ×W. We count
the number of elements of length n in three different ways.

1. Combinatorial argument First, we can see that for any usual binary string of length n, there
are n+ 1 ways to insert the bookmark, including the beginning and the end, hence we expect 2n(n+ 1)
elements of length n.

2. Recurrence on coefficients From the above formula, we have

V ≡ W ×W =⇒ Vn =

n∑
k=0

WkWn−k =

n∑
k=0

2k2n−k =

n∑
k=0

2n = (n+ 1)2n,

as predicted.

3. Generating functions By the formula, the fact that W (z) = 1
1−2z and the identity [zn] 1

(1−mz)r =

mr
(
r+n−1
n

)
, we have that

Vn = [zn]W (z)2 = [zn]
1

(1− 2z)2
= 2n

(
2 + n− 1

n

)
= 2n

n+ 1

n
= (n+ 1)2n.

Exercise. Which one of these methods is easiest if we have 2 bookmarks (ordered)? 200 bookmarks?
Which one is most automatic? What if we have 2 or 3.

2.4 Revisit Unions
Similarly we have seen that the disjoint union is nice

Definition. Let A,B, C be combinatorial classes such that

A = B ∪ C B ∩ C = ∅

with size defined in a compatible way; if ω ∈ A then

|ω|A =

{
|ω|B ω ∈ B
|ω|C ω ∈ C

.

Then we clearly have

An = Bn + Cn

A(z) = B(z) + C(z)

Hence the union of disjoint sets is admissible and it translates as a sum of ogf.
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If we see that it is a problem of counting elements of a union of disjoint sets or a cartesian product
then we do not have to write down explicit recurrence relations as an intermediate stages, rather we
can directly write down the relationship between the generating functions. This is the spirit of the
symbolic method for combinatorial enumeration.

2.5 Elemental classes
So let us prove a theorem demonstrating some of the basic constructions we can use to build up more
complicated objects.

Definition (Neutral + atomic classes). Let E denote the neutral class that consists of a single object of
size zero. This is typically denoted ε. It typically denotes (say) the single empty word, the single graph
of zero vertices, or single graph of zero edges etc. etc.

Let Z denote the atomic class that consists of a single object of size 1 called an atom. This is typically
something like a single generic vertex or a single generic edge or a single generic letter. Distinct copies
of the atomic class should be denoted with a subscript. Eg for our binary words we could have Z0 = {0},
Z1 = {1} etc.

Clearly E(z) = 1 and Z(z) = z.

A key way in which we use ε: elements of E × B are if the form (ε, β), and the size of this element is
|(ε, β)| = |ε|+ |β| = 0 + |β| = |β|. Thus, there is a natural combinatorial isomorphism between E ×B and
B.

Cartesian product and disjoint union we have already seen. It is possible to to handle the “disjoint-
edness” without explicitly knowing that the sets are disjoint. We use “+” instead of “∪”. The idea is to
do something like

B + C = ({blue} × B) ∪ ({red} × C)

ie - colour all the elements of one set blue and the other set red — so that the size is unchanged and so
that these new coloured sets must be disjoint regardless of whether or not the original sets are.

Note that if we really have to worry about whether or not the sets are disjoint we get into trouble
because we need to compute the size of the intersection

cardinality(Bn ∪ Cn) = cardinality(Bn) + cardinality(Cn)− cardinality(Bn ∩ Cn)

and we cannot get the size of the intersection from the ogfs B(z), C(z) without extra information — not
an admissable construction.

Now, with just union and cartesian product we could define a few finite classes, but let us add one
more to our toolbox before we move on to more advanced topics.

2.6 Sequence construction
Definition (Sequence). If B is a class then the sequence class SEQ(B) is defined to be the infinite sum

A = SEQ(B) = E + B + (B × B) + (B × B × B) + . . .

equivalently

A = {(β1, β2, . . . , βl) s.t. βj ∈ B, l ≥ 0}

Notice that this only works if B does not contain an element of size zero (a neutral element). Also

α = (β1, β2, . . . , βl) ⇒ |α| = |β1|+ · · ·+ |βl|
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Notice that if we want a sequence that contains exactly k-objects or at least k objects then we might
write

SEQk(B) = Bk SEQ≥k(B) = Bk × SEQ(B)

and modify the constructions accordingly
For example, the class of binary strings is combinatorially isomorphic toW = SEQ(Z0 + Z1).

The generating functions follows similarly: If A = SEQk(B) =

k times︷ ︸︸ ︷
B × B × · · · × B then A(z) = B(z)k.

Hence, we can show that

A(z) = 1 +B(z) +B(z)2 +B(z)3 · · · = 1

1−A(z)
.

So, for example, in the case of binary words, W = SEQ(Z0 + Z1) and thus the role of A is played by
Z0 + Z1 which has generating function 2z. Thus, W (z) = 1

1−2z .

3 Families of words
Fix a finite alphabet A — we consider them to all have unit size. The set of all words on the alphabet
is simply the sequences of letters made from this alphabet

W = SEQ(A)

W (z) =
1

1−A(z)
=

1

1− z · card(A)

Let us return to binary words, but keep in mind how you might generalize all of this to a larger alpha-
bet. The shorthand SEQ(A) = A∗ is also very common. Furthermore, we often write the atoms Z0 and
Z1 as simply 0 and 1.

Consider binary words on 0, 1. As above, we can write

W = SEQ(Z0 + Z1) ≡ (0 + 1)∗.

But we could also decompose any such word by cutting it at each 1. This gives

W = SEQ(Z1)× SEQ(Z0 × SEQ(Z1)) = 0∗(10∗)∗

which mercifully gives

W (z) =
1

1− z
1

1− z 1
1−z

=
1

1− 2z

To recover the binary string we remove the parentheses and concatenate:

((0, 0), (1, 0, 0), (1, 0), 1, 1, 1, 1, 1)→ 001001011111.

This type of decomposition can be very helpful. The biggest challenge is ensuring that each word is
generated in a unique way. For example, (0011+00+1)∗ generates the string 0011 in two different ways,
and hence there is not a unique representation, and we cannot translate to the generating functions
using our theorems.

Example. Let us now determine a specification for a combinatorial class L of binary words with the
additional condition that each block of 0s is of even length. Thus, 0010000111001 and 111 are in the
language but 00011 and 11110 are not. We write L = (00+1)∗ = SEQ((Z0×Z0)+Z1) = SEQ(SEQ2(Z0)+
Z1)
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Example. Wesley asked, what about the binary language where blocks of 0s are of odd length? Good
question. Let’s try an easier problem, and we will leave the more general problem for the homework.
So, we assume all blocks are of even length to mean that there are no blocks of length 0.

First, let’s list the first words:

Wodd = {0, 01, 10, 010, 000, 0001, 1000, 0101, 1010, . . . }

We find the specification:
(1 + ε)0(00)∗(10(00)∗)∗(1 + ε).

This translates directly to the generating function:

Wodd = (1 + ε) 0(00)∗ (10(00)∗)∗ (1 + ε)

l l l l

W (z) = (z + 1) z 1
1−z2

1

1− z2

1−z2

(z + 1) = z(z+1)2

2z2−1 = z + 2z2 + 3z3 + 4z4 + . . .

Yay! This agrees with what we did above. Let us discuss this decomposition, a little more. The first
term, (1 + ε) says the first letter is either 1 or is what ever comes next. The term 0(00)∗ is a sequence of
0’s of odd length: a single 0 followed by a sequence of 0’s of even length. The next term is the heart of
the decomposition: every 1 is followed by an odd block of 0s, and we have decomposed the string by the
ones. That is, we view a binary string as a sequence of terms of the form 1, followed by an odd block of
1s. We end with either a 0 or a 1. (The ε says that you end with a 0 in the decomposition.)

Exercise. Now, answer the problem that wesley intended: Blocks of 0’s, if they appear, have odd
length.

L = {ε, 0, 1, 11, 01, 10, 111, 110, 101, 011, 000, . . . }
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