
Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due
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Iterative classes
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1 Regular specifications
1.1 Recall: combinatorial specification
Definition. A specification for an r-tuple of classes A = (A(1), . . . ,A(r)) is a set of r equations

A(1) = Φ1(A(1), . . . ,A(r))

...

A(r) = Φr(A(1), . . . ,A(r))

where each Φi is built using the admisible constructions we know as well as the neutral class E and
atomic class Z.

You can think of drawing a graph of dependencies between these classes. If the class is acyclic then
the problem can be solved iteratively. If it contains a cycle then the construction is recursive and can
hopefully be solved as we solved the tree problem.

Definition. A class is said to be constructible (or specifiable) iff it admits a specification in terms of
admissible operators.

We focus recursive and iterative constructions. Consider a graph of dependencies. If it is acyclic,
the specification is said to be iterative. If there is a cycle containing A, then we say that A is recursive.

1.2 Regular specifications
Previously we considered classes which were word families. These looked like A = Φ(Z1,Z0). These
are all iterative constructions.

Definition. An iterative specification (no recursion) that only involves atoms, combinatorial sums,
cartesian products, and sequence constructions is said to be a regular specification. A language is said
to be specification-regular, or, simply regular, if it is combinatorially isomorphic to a class of objects
with a regular-specification.

This definition does not (apparently) match the usual definition of a regular language from computer
science. In that context we would say a language is regular if there is a regular expression (this
is the same as an iterative specification involving atoms, +, × and SEQ() but in different notation),
which generates the words of the language. But there is no restriction on whether they are generated
uniquely. Such a non-unique specification wouldn’t give the correct combinatorial class: multiple copies
of some words would appear, and so in particular the generating function would be wrong.

However, it turns out that for any regular language in the sense of computer science, there is always
a specification which uniquely generates it. The proof is nontrivial and can involve blowing up the size
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of the specification exponentially. See Flajolet and Sedgewick, Analytic Combinatorics, Cambridge
(2009), Appendix A8, http://algo.inria.fr/flajolet/Publications/book.pdf.

A nice result about regular languages is...

Theorem. Any regular language has a rational ogf.

You can prove this without too much difficulty. A harder question is the inverse: For which rational
functions Q(z) can you derive a regular specification whose generating function is precisely Q(z)?

2 Integer compositions C
Another nice class of regular examples come from integer compositions.

Definition. A composition of an integer n is a sequence (x1, . . . , xk) of positive integers so that n =
x1 + · · ·+ xk.

For example, there are 8 compositions of 4:

C4 = {1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2, 3 + 1, 1 + 3, 4}

Let us determine a specification for integer compositions. So — let us start by treating natural numbers
as a sequence of units.

We can think of the bijection

1↔ ◦
2↔ ◦−◦
3↔ ◦−◦−◦
4↔ ◦−◦−◦−◦

Thus

N = I ∼= SEQ≥1({◦})

I(z) =
z

1− z

Then compositions are simply a sequence of natural numbers

1 + 1 + 1 + 1↔ (◦, ◦, ◦, ◦)
2 + 1 + 1↔ (◦−◦, ◦, ◦)
1 + 2 + 1↔ (◦, ◦−◦, ◦)
1 + 1 + 2↔ (◦, ◦, ◦−◦)

...
4↔ (◦−◦−◦−◦)

Thus, the specification is:

C = SEQ(I)

C(z) =
1

1− I(z)
=

1

1− z
1−z

=
1− z

1− 2z
.

This can easily be expanded

C(z) =
∑
n≥0

(2n − 2n−1)zn =
∑
n≥0

2n−1zn.

MARNI MISHNA, SPRING 2011; KAREN YEATS, SPRING 2013 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 2/4



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 6 Iterative classes

Exercise. Find a simple combinatorial argument for this formula

Now we are well placed to consider some variants: What if the largest part you want to consider is
3? This removes the composition 4 from the above list of compositions of 4, for example. Well, it suffices
to restrict the class of integers that we put into a composition.

What if we want compositions with at most k parts? We fiddle with the allowable sequence length.

Compositions
Type Spec ogf

all SEQ(SEQ≥1(Z))
1

1− z
1−z

parts ≤ r SEQ(SEQ1...r(Z))
1

1− z−zr+1

1−z

k parts SEQ=k(SEQ≥1(Z))

(
z

1− z

)k

3 Some computer explorations: Playing with specifications
We can use built-in functionality in Maple in order to play around with objects that can be defined
by these specifications. The package is combstruct, and it allows the user to see the start of the
generating function (gfseries), to try to find an explicit generating function (gfsolve)

3.1 Binary words and variants
Maple

> with (combstruct):
> BINWORDS:= {W=Sequence(Union(Z1, Z0)), Z1=Atom, Z2=Atom}:
> gfseries(BINWORDS, unlabelled, z);

table( [( Z1(z) ) = series(z,z), ( W(z) )
=series(1+2*z+4*zˆ2+8*zˆ3+16*zˆ4+32*zˆ5+O(zˆ6),z,6), ( Z0(z) ) =series(z,z) ] )

> gfsolve(BINWORDS, unlabelled, z);
{W(z) = -1/(-1+2*z), Z0(z) = z, Z1(z) = z}

Remark that gfseries outputs a table. This means we can access it directly for more succint
output. We can also re-set the number of terms computed in the series command by modifying the
Order parameter. We can also determine a single coefficient, with coeff.

Maple
> CYCLICWORDS:={W=Cycle(Union(Z1, Z0)), Z1=Atom, Z0=Atom}:
> gfseries(CYCLICWORDS, unlabelled, z)[W(z)];

series(2*z+3*zˆ2+4*zˆ3+6*zˆ4+8*zˆ5+O(zˆ6),z,6)
> gfsolve(CYCLICWORDS, unlabelled, z);

{W(z) = Sum(numtheory:-phi(j[1])*ln(-1/(-1+2*zˆj[1]))/j[1], j[1] =1 .. infinity),
Z0(z) = z, Z1(z) = z}

> Order:= 20:
> Wser:= gfseries(CYCLICWORDS, unlabelled, z)[W(z)]:
> coeff(Wser, z, 18);
14602

There are 14602 cyclic binary words of length 18.
Maple

> COMPS:={C=Sequence(Sequence(Z, card >0))}:
> gfsolve(COMPS, unlabelled, z);

> Order := 20:
> C_ser:=gfseries(COMPS, unlabelled, z)[C(z)]:
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##------- Compositions with at least five parts
> COMPS_5:={C=Sequence(Sequence(Z, card >0), card>=5)}:
> Cser_5:= gfseries(COMPS_5, unlabelled, z)[C(z)]:

##------- Proportion of compositions of size 18 with at least 5 parts
> coeff(Cser_5, z, 18) / coeff(Cser, z, 18);

> evalf(%);

Exercise. Find the number of partitions with at most 5 parts of size 25. Find the number of partitions
of size 25 in which each part is at most 5.
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