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Trees and Lagrange inversion
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1 Recursive specifications
The prototypical recursive structure is a tree.

Definition. A plane tree is the embedding of a graph without cycles into the plane. Such a tree is
rooted if one of its vertices is specified (the root vertex). Since the tree is embedded in the plane, the
children of each node have a unique ordering (say clockwise). The size of a rooted plane tree is the
number of vertices it contains.

The enumeration of trees is best done recursively (there are other sneakier ways). Take any tree
you like — and delete its root. One is left with a “forest” of trees — possibly empty. This forest consists
of a (possibly empty) sequence of trees — each rooted at the vertex which was attached to the original
root.

1.1 Binary Trees B
(These are the binary trees from assignment 1, not the ones from lecture.)

We define the combinatorial class B as the set of all rooted trees in which each node has either 2 or
0 children. The size of a tree is the number of nodes. Recursively, a tree is defined as either a node, or
a node and two subtrees.
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Bn for small n

1.1.1 A recursive structure

We can formalize this recursive structure into a combinatorial decomposition. Consider the following
example of a decomposition:

B11 = Z × B1 × B9 + Z × B3 × B7 + Z × B5 × B5 + Z × B7 × B3 ∪ Z × B9 × B1.

This translates into the following counting formula.

b11 = b1b9 + b3b7 + b25 + b3b7 + b9b1.

We see in general the counting formula is

bn =

n−1∑
k=0

bkbn−1−k.

1.1.2 Decomposition

In fact, we can describe a recursive combinatorial description. We are going to translate “A binary tree
is either a node, or a node and two subtrees” into the following decomposition:

B = Z + Z × B × B.

We apply the above sum and the product rules to recover the following generating function relation:

B(z) = Z(z) + Z(z)B(z)B(z) = z + zB(z)2.

We can even solve for B(z); B(z) satisfies

zB(z)2 −B(z) + z = 0.

We can use the quadratic formula to solve this 1:

B(z) =
1−
√

1− 4z2

2z
.

1Yes, there is a second solution, but it does not give rise to a formal power series solution. Evaluate the coefficients: they are
negative. We can show that there is always a power series solution to a combinatorially derived algebraic equation.
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1.1.3 Coefficients

We can use various series expansion tools to recover the initial terms of the generating function:

B(z) = z + z3 + 2z5 + 5z7 + . . . .

We can also apply the binomial theorem to determine an explicit expression for the coefficient of zn
in B(z). We did a comparable computation in Lecture 2. Follow it along to derive that, for n even the
coefficent is 0, and when n = 2m− 1, we have

bn = b2m−1 =

(
2m− 2

m− 1

)
1

m
.

Exercise. Compute b2m−1 for small m, and verify that it gives the right number of binary trees.

1.2 Rooted Plane Trees
We can even consider general rooted plane trees. Every rooted plane tree is a root vertex attached to a
sequence of rooted plane trees

T = Z × SEQ(T )

T (z) =
z

1− T (z)

T (z)2 − T (z) + z = 0

T (z) =
1±
√

1− 4z

2

If we take the positive branch the power series has negative coeffs, so

=
1−
√

1− 4z

2
= z + z2 + 2z3 + 5z4 + . . .

=
∑
n≥0

1

n

(
2n− 2

n− 1

)
zn

We can step through this recursion slowly to generate the elements of T . Rewrite the recursion as

T [n+1] = Z × SEQ(T [n])

Start by taking T [0] = {ε}, then

T [1] = {◦}
T [2] = {◦, ◦[◦], ◦[◦◦], ◦[◦ ◦ ◦], . . . }

Thus T [n] contains all trees of depth < n. One can quickly see that continuing this iteration gives all
trees (any given tree will appear after a finite number of iterations).

Exercise. Did you notice that [z2n+1]B(z) = [zn]T (z)? Can you find the bijection?

2 Simple trees and Lagrange Inversion
2.1 Restricting the out-degree
We already talked about binary trees

B = Z + Z × B × B
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and rooted plane trees —

G = Z × SEQ(G).

In each case the construction is made by remarking that if the root is deleted, what is left is an ordered
sequence of (smaller) rooted trees. This gives generating function relations:

B(z) = z + zB(z)2 G(z) =
z

1−G(z)
.

We solved them using the quadratic formula, and both give Catalan numbers in the couting sequence:

B(z) =
1−
√

1− 4z2

2z
G(z) =

1−
√

1− 4z

2
.

For this example the nodes can have any out-degree, but in many cases (eg useful computer science
ones) we need to restrict the possible outdegrees of the nodes. For example, let Ω be a subset of non-
negative integers that contains zero. We can define the class of Ω-restricted trees T Ω to be the set of
rooted plane trees whose node outdegrees lie only in Ω.

These classes will result in equations for the generating function which are of higher degree than
quadratic, so we will need new tools beyond the quadratic formula to solve them. But first the classes
themselves:

If we take Ω = Z+ we get all rooted plane trees (boring), but we can also take Ω = {0, 2} to get binary
trees, etc etc. Now define

φ(u) =
∑
ω∈Ω

uω

Some examples

φ(u) = 1 + u2 binary trees

φ(u) = 1 + u+ u2 unary-binary trees
φ(u) = 1/(1− u) all trees

Then we have the following theorem about T Ω:

Lemma. The ogf, TΩ(z), of Ω-restricted plane trees satisfies the following

TΩ(z) = zφ(TΩ(z))

where φ(u) =
∑

ω∈Ω u
ω.

A class of trees that satisfies such an equation is called a simple variety of trees.

2.2 Lagrange Inversion
So notice now that this functional relation implies

z =
T

φ(T )

ie — T takes some number z and turns it into T (z). You can get back to where you started (ie functional
inverse) by computing T/φ(T ). Cute. But also, this functional form can be exploited in order to get an
exact expression for Tn — this uses something called the Lagrange inversion formula.
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Theorem (Lagrange inversion). The coefficients of an inverse function and all of its powers are deter-
mined by the coefficients of powers of the forward function. So if z = T/φ(T ) then

[zn]T (z) =
1

n
[ωn−1]φ(ω)n

[zn]T (z)k =
k

n
[ωn−k]φ(ω)n

Note that this immediately gives

TΩ
n =

1

n
[ωn−1]φ(ω)n

Considerably more general forms of this theorem exist, but this suffices for our purposes.

Example. Plane Trees

T (z) =
z

1− T (z)
φ(u) =

1

1− u

φ(u)n =
1

(1− u)n
=

∞∑
k=0

(
n+ k − 1

k

)
uk

Tn =
1

n
[un−1]φ(u)n =

1

n

(
2n− 2

n− 1

)
Example. Binary Plane Trees

B = Z ×
{
E + B2

}
B(z) = z(1 +B(z)2)

B(z) =
1−
√

1− 4z2

2z
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