Ranking and unranking Dyck paths

Contents

1 Ranking and unranking Dyck paths 1
1.1 Dyck paths to words 1
1.2 Counting suffixes of Dyck paths 1
1.3 Ranking and unranking 2

1 Ranking and unranking Dyck paths

1.1 Dyck paths to words

Recall Dyck paths from lecture 5

We can represent a Dyck path as a word using the letters $\{\nearrow, \searrow\}$. If we write \nearrow as 0 and \searrow as 1 we can represent a Dyck path as a binary string.

Which binary strings do we get?
Definition. Say a binary string of length $2 n$ is totally balanced if

- The string contains n zeros and n ones.
- For any $1 \leq i \leq 2 n$, the first i elements of the string include at least as many zeros and ones.

This is exactly the same as the condition defining Dyck paths: the second point is that the path never goes strictly below the x-axis, while the first point is that the path returns to the x-axis at the end.

Viewing Dyck paths as binary strings gives them a natural lexicographic order. This is the order we will rank and unrank with respect to.

1.2 Counting suffixes of Dyck paths

Definition. Let $\mathcal{D}_{2 n}(x, y)$ be the set of paths from (x, y) to $(2 n, 0)$ using the steps $(1,1)$ and $(1,-1)$ and which never go strictly below the x-axis.

Let $d_{2 n}(x, y)=\left|\mathcal{D}_{2 n}(x, y)\right|$.
Such paths are ends (suffixes if you think of them as words) of Dyck paths.
Proposition. Let x, y, and n be positive integers with $x+y$ even and $x+y \leq 2 n$. Then

$$
d_{2 n}=\binom{2 n-x}{n-\frac{x+y}{2}}-\binom{2 n-x}{n-1-\frac{x+y}{2}}
$$

Proof. Lets first count all paths using the steps $(1,1)$ and $(1,-1)$ which go from (x, x) to $(2 n, 0)$ without regards to whether or not they cross the x-axis.

Such paths must contain $2 n-x$ steps, since they need to move $2 n-x$ units in the x direction. Furthermore such paths must move a net of y steps in the y direction. So there are y extra $(1,-1)$ steps, and the remaining steps are evenly divided between $(1,1)$ and $(1,-1)$. So there are $2 n-x-y$ such remaining steps, half of each type. Thus there are

$$
\begin{gathered}
n-\frac{x+y}{2}(1,1) \text { steps } \\
n-\frac{x+y}{2}+y(1,-1) \text { steps }
\end{gathered}
$$

and no restriction on which order the steps come in. So there are

$$
\binom{2 n-x}{n-\frac{x+y}{2}}
$$

such paths.
Now we just need to subtract off those paths which do go strictly below the x axis. Let w be such a path, and let $(a,-1)$ be the integer point where it is first strictly below the x-axis. Flip the portion of the path before ($a,-1$) across the line $y=-1$, as illustrated

Note that the modified path goes from $(x,-y-2)$ to $(2 n, 0)$. Note also that given a path from $(x,-y-2)$ to $(2 n, 0)$ there is a unique point where it may have been flipped according to this rule: namely the first place where the path reaches $(a,-1)$ for some a.

Thus the number of paths from (x, y) to $(2 n, 0)$ which do go strictly below the x-axis is the same as the number of all paths from $(x,-y-2)$ to $(2 n, 0)$. Counting as before this is

$$
\binom{2 n-x}{n-1-\frac{x+y}{2}}
$$

Therefore the number of paths from (x, y) to $(2 n, 0)$ which never go strictly below the x-axis is

$$
\binom{2 n-x}{n-\frac{x+y}{2}}-\binom{2 n-x}{n-1-\frac{x+y}{2}}
$$

1.3 Ranking and unranking

The formula for counting suffixes tells us about the rank. Suppose $w=w_{1} w_{2} \cdots w_{2 n}$ is a Dyck path represented as a binary string. Suppose that after the first k steps the path is at the point (x, y). If $w_{k+1}=1$ so the next step is down, then all the words which begin $w_{1} w_{2} \cdots w_{k} 0$ come before w in lexicographic order. There are $d_{2 n}(x+1, y+1)$ such paths (the +1 s come from the last up step). Thus we have

Algorithm: RankDyck

```
input: n, w. w is a totally balanced word of length 2n
y=0
r=0
for x from 1 to 2n
    if w(x) = 0
        y=y+1
    else
        r=r+binom(2n-x,n-(x+y)/2)-binom(2n-x,n-1-(x+y)/2)
        y = y - 1
output: r
```

Algorithm: UnrankDyck

```
input: n,r.
y=0
rlow=0
for x from 1 to 2n
    m= binom(2n-x,n-(x+y)/2) -binom(2n-x,n-1-(x+y)/2)
    ifr < rlow + m - 1
        y=y+1
        w (x) =0
    else
        rlow = rlow + m
        y=y-1
        w (x) =1
output: w
```

Here's an example of each algorithm which comes from Kreher and Stinson, Combinatorial Algorithms, section 3.4.

Suppose we want to compute $\operatorname{rank}(w=0010110101)$. Then:

x	$w(x)$	y	r
1	0	1	0
2	0	2	0
3	1	1	14
4	0	2	14
5	1	1	18
6	1	0	21
7	0	1	21
8	1	0	22
9	0	1	22
10	1	0	

so the rank is 22 .
Now to calculate unrank(22)

m	x	y	rlow	$w(x)$
$d_{10}(1,1)=42$	1	1	0	0
$d_{10}(2,2)=28$	2	2	0	0
$d_{10}(3,3)=14$	3	1	14	1
$d_{10}(4,2)=9$	4	2	14	0
$d_{10}(5,3)=4$	5	1	18	1
$d_{10}(6,2)=3$	6	0	21	1
$d_{10}(7,1)=2$	7	1	21	0
$d_{10}(8,2)=1$	8	0	22	1
$d_{10}(9,1)=1$	9	1	22	0
$d_{10}(10,2)=0$	10	0	22	1

so we unrank to 0010110101 as expected.

