Ranking and unranking Dyck paths

Contents

SFU

1	1 Ranking and unranking Dyck paths						
	1.1 Dyck paths to words	1					
	1.2 Counting suffixes of Dyck paths						
	1.3 Ranking and unranking						

LECTURE 9

1 Ranking and unranking Dyck paths

1.1 Dyck paths to words

Recall Dyck paths from lecture 5

We can represent a Dyck path as a word using the letters $\{\nearrow, \searrow\}$. If we write \nearrow as 0 and \searrow as 1 we can represent a Dyck path as a binary string.

Which binary strings do we get?

Definition. Say a binary string of length 2n is totally balanced if

- The string contains n zeros and n ones.
- For any $1 \le i \le 2n$, the first *i* elements of the string include at least as many zeros and ones.

This is exactly the same as the condition defining Dyck paths: the second point is that the path never goes strictly below the x-axis, while the first point is that the path returns to the x-axis at the end.

Viewing Dyck paths as binary strings gives them a natural lexicographic order. This is the order we will rank and unrank with respect to.

1.2 Counting suffixes of Dyck paths

Definition. Let $\mathcal{D}_{2n}(x, y)$ be the set of paths from (x, y) to (2n, 0) using the steps (1, 1) and (1, -1) and which never go strictly below the *x*-axis.

Let $d_{2n}(x, y) = |\mathcal{D}_{2n}(x, y)|$.

Such paths are ends (suffixes if you think of them as words) of Dyck paths.

Proposition. Let *x*, *y*, and *n* be positive integers with x + y even and $x + y \le 2n$. Then

$$d_{2n} = \binom{2n-x}{n-\frac{x+y}{2}} - \binom{2n-x}{n-1-\frac{x+y}{2}}$$

Proof. Lets first count all paths using the steps (1,1) and (1,-1) which go from (x,x) to (2n,0) without regards to whether or not they cross the x-axis.

LECTURE 9

Such paths must contain 2n - x steps, since they need to move 2n - x units in the x direction. Furthermore such paths must move a net of y steps in the y direction. So there are y extra(1, -1) steps, and the remaining steps are evenly divided between (1, 1) and (1, -1). So there are 2n - x - y such remaining steps, half of each type. Thus there are

$$n-rac{x+y}{2} \ (1,1) ext{ steps } \ n-rac{x+y}{2}+y \ (1,-1) ext{ steps }$$

and no restriction on which order the steps come in. So there are

$$\binom{2n-x}{n-\frac{x+y}{2}}$$

such paths.

Now we just need to subtract off those paths which do go strictly below the x axis. Let w be such a path, and let (a, -1) be the integer point where it is first strictly below the x-axis. Flip the portion of the path before (a, -1) across the line y = -1, as illustrated

Note that the modified path goes from (x, -y - 2) to (2n, 0). Note also that given a path from (x, -y - 2) to (2n, 0) there is a unique point where it may have been flipped according to this rule: namely the first place where the path reaches (a, -1) for some a.

Thus the number of paths from (x, y) to (2n, 0) which do go strictly below the *x*-axis is the same as the number of all paths from (x, -y - 2) to (2n, 0). Counting as before this is

$$\binom{2n-x}{n-1-\frac{x+y}{2}}$$

Therefore the number of paths from (x, y) to (2n, 0) which never go strictly below the x-axis is

$$\binom{2n-x}{n-\frac{x+y}{2}} - \binom{2n-x}{n-1-\frac{x+y}{2}}$$

1.3 Ranking and unranking

The formula for counting suffixes tells us about the rank. Suppose $w = w_1 w_2 \cdots w_{2n}$ is a Dyck path represented as a binary string. Suppose that after the first k steps the path is at the point (x, y). If $w_{k+1} = 1$ so the next step is down, then all the words which begin $w_1 w_2 \cdots w_k 0$ come before w in lexicographic order. There are $d_{2n}(x+1, y+1)$ such paths (the +1s come from the last up step). Thus we have

```
Algorithm: RankDyck

input: n, w. w is a totally balanced word of length 2n

y=0

r=0

for x from 1 to 2n

if w(x) = 0

y=y+1

else

r=r+binom(2n-x,n-(x+y)/2)-binom(2n-x,n-1-(x+y)/2)

y=y-1

output: r
```

— Algorithm: UnrankDyck —

```
input: n,r.
y=0
rlow=0
for x from 1 to 2n
  m = binom(2n-x,n-(x+y)/2)-binom(2n-x,n-1-(x+y)/2)
  if r <= rlow + m - 1
    y=y+1
    w(x)=0
  else
    rlow = rlow + m
    y=y-1
    w(x)=1
output: w
```

Here's an example of each algorithm which comes from Kreher and Stinson, Combinatorial Algorithms, section 3.4.

Suppose we want to compute rank(w = 0010110101). Then:

					1	X			
x	w(x)	y	r	_					
1	0	1	0	-					
2	0	2	0						
3	1	1	14						
4	0	2	14						
5	1	1	18						
6	1	0	21						
7	0	1	21						
8	1	0	22						
9	0	1	22						
10	1	0							
so the rank is 22.									
Now to calculate $unrank(22)$									
	m		x	y	rlow	w(x)			
$d_{10}($	(1,1) =	42	1	1	0	0			
$d_{10}($	(2,2) =	28	2	2	0	0			
$d_{10}($	(3,3) =	14	3	1	14	1			
d_{10}	(4,2) =	9	4	2	14	0			
d_{10}	(5,3) =	4	5	1	18	1			
	(6,2) =		6	0	21	1			
d_{10}	(7,1) =	2	7	1	21	0			
d_{10}	(8,2) =	1	8	0	22	1			
d_{10}	(9,1) =	1	9	1	22	0			
	(10, 2) =		10	0	22	1			
so we unrank to 0010110101 as expected									

so we unrank to 0010110101 as expected.