MATH 343, SPRING 2013, ASSIGNMENT 7

DUE THURSDAY MARCH 28, 2013 IN CLASS

Do any three of the following four problems. If you do more than three, only the first three will be graded.
(1) Consider the generating tree given by the rule

$$
(1 ;\{k \mapsto(2)(3) \cdots(k)(k+1)\})
$$

(a) How many leaves at a given level does this tree have?
(b) We know some objects counted by these numbers; pick one and describe how to view this generating tree as generating these objects
(2) (Ref: Kreher and Stinson, exercise 4.1) Define choice sets and describe backtracking algorithms for the following problems:
(a) Find all self-avoiding walks of length n. (Such a walk is a sequence of steps of unit length, either horizontal or vertical (up/down/left/right $=\mathrm{N} / \mathrm{S} / \mathrm{W} / \mathrm{E}$.) such that no point is visited more than once. There are 4^{1} of length 1 (N; S; E; W) and 12 of length $2([\mathrm{~N}, \mathrm{~N}],[\mathrm{N}, \mathrm{E}],[\mathrm{N}, \mathrm{W}]$, etc. but not $[\mathrm{N}, \mathrm{S}]$ since it revisits the origin).
(b) Find all k-vertex colourings of a graph G. Recall a k-colouring is a graph is an assigment of at most k colours to the vertices of the graph such that adjacent vertices have different colours.
(3) Implement the pruned Knapsack algorithm. Run it on some examples and plot the runtimes as a function of n. Roughly what does the runtime in practice seem to be (use a \log plot to see if it is stil exponential...)
(4) (a) Find at least 2 typos in the typed notes.
(b) What section in the typed notes would you most like to see expanded? Why?

[^0]
[^0]: ${ }^{1}$ There is an error in the book

