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ABSTRACT

A new class of exact vortex dipole solutions is derived for surface quasi-

geostrophic (sQG) models. The analysis extends the two-dimensional

barotropic modon to fully three-dimensional, continuously stratified

flow. Dipole structures exist for a variety of sQG configurations. In

particular, the basic dipole propagates counter to the phase speed of

linear Rossby waves in the presence of uniform background gradients

of the surface potential temperature or planetary vorticity, and reduces

to the barotropic Lamb dipole in the limit of a thin sQG layer.
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1. Introduction

Steadily translating dipolar vortices, also known as modons, arise as exact solutions in many

geophysical fluid systems (Flierl 1987). They can be viewed as a robust pair of opposite-

signed vortices whose mutual interaction leads to steady propagation of the entire structure.

Vortex dipoles have been used as models for cold-core oceanic rings (Flierl 1980), atmospheric

blocks (McWilliams 1980, Butchart et.al. 1989), and tropopause troughs and jets (Hakim

2000, Cunningham and Keyser 2000). Such applications have been limited by the fact that,

except for Berestov (1979), the available dipole solutions all come from barotropic or layered

models. Coherent structures on the tropopause, in particular, are most naturally and simply

described in surface quasigeostrophic (sQG) models (Held et al. 1995), which have been

applied extensively to the midlatitude tropopause (Rivest et.al. 1992, Juckes 1994, Muraki

and Hakim 2000, Hakim et al. 2002). In this paper, we add to the existing gallery of exact

dipole solutions by deriving a three-dimensional, continuously stratified modon for sQG,

together with several related variations to that solution.

2. The Modon Construction & Surface Quasigeostrophy

The simplest sQG model consists of an atmosphere having infinite horizontal extent (in x, y),

bounded below by a rigid lower surface (z ≥ 0), and under the assumptions of constant

stratification. The dynamical equations of quasigeostrophy (QG) are advections involving

the interior potential vorticity (Q) and the surface potential temperature (Θs)

DQ

Dt
= Qt + J(Ψ, Q) = 0 (1)

DΘ

Dt

s

= Θs
t + J(Ψs,Θs) = 0 (2)

where J(f, g) = fxgy − gxfy is the horizontal Jacobian and superscript s denotes surface

(z = 0) quantities (Held, et.al. 1995). The horizontal winds (U, V ) and potential temperature
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(Θ) are given by geostrophy

U = −Ψy ; V = Ψx ; Θ = Ψz (3)

where the QG streamfunction (Ψ), is obtained via the three-dimensional Poisson inversion

∇2Ψ = Q ; Ψz(x, y, 0) = Θs (4)

with decay to uniform flow (specifically in the case of a dipole) imposed in all unbounded

directions.

In the literature, the only steady dipole solutions for a three-dimensional, stratified fluid

are related to the spherical QG modon of Berestov (1979). The usual starting point for a

modon construction is the assumption that the potential vorticity (PV) and streamfunction

satisfy one linear relation inside a region of trapped fluid, and different one outside. For the

Berestov dipole the trapped region is a sphere of radius R, and the linear PV-streamfunction

relation is

Q =


αiΨ inside (0 ≤ r < R)

αoΨ outside (R < r <∞)
(5)

where r is the radial spherical coordinate (r2 = x2+y2+z2). The α coefficients are determined

as part of the solution process. It is also required that the wind is uniform in the far-field.

Details of this solution are also given in Flierl (1987). The essential property of the Berestov

dipole is that its dynamics are associated entirely with interior PV.

Flows in sQG, in contrast, have uniform PV and their dynamics are associated with a

potential temperature disturbance on a horizontal boundary. Thus in sQG, the PV advection

equation is satisfied identically by imposing uniform interior PV (Q = 0). The dipole motion

is then implied by the evolution of surface potential temperature (2). Our derivation begins

by decomposing the streamfunction into a localized disturbance and a uniform zonal wind

Ψ = ψ(r, φ, z) + c r sinφ ; Θ = θ(r, φ, z) = ψz(r, φ, z) (6)
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expressed in terms of cylindrical coordinates (r2 = x2+y2). Here, a localized dipole is defined

by the disturbance streamfunction ψ which decays in all unbounded directions. Note that

a stationary dipole in an easterly mean wind (U∞ = −c < 0) would correspond, under a

Galilean transformation, to a westward propagating dipole (having speed c) in a quiescent

environment. The steady-state condition is obtained from the surface advection (2)

J(ψs + c r sinφ, ψs
z) = 0 . (7)

The modon construction fulfills the above zero Jacobian condition by specifying the linear

relation

ψs
z =


−α
R

(ψs + c r sinφ) inside (0 ≤ r < R)

0 outside (R < r <∞)
(8)

which imposes decay as r →∞ by setting the surface potential temperature exactly to zero

outside the dipole boundary. The sQG dipole solution is thus obtained by solving the linear

system that consists of the zero PV Laplace inversion

∇2ψ = 0 (9)

with the above modon relation (8) as a surface boundary condition, and far-field decay. There

is an additional consistency relation requiring that the circle defining the surface-trapped

fluid (r = R) be itself a streamline of the flow – this determines the proportionality constant

α and embodies the only nonlinear aspect of the solution method.

The inhomogeneous contribution in the dipole equation (8) has a sinφ angular depen-

dence. It follows that the streamfunction ψ must inherit the same azimuthal structure. The

general solution of the Laplace equation (9) for this mode has the integral representation

ψ(r, φ, z) = Rc sinφ
∫ ∞

0
ψ̂(σ) J1(σr/R) exp(−σz/R) σ dσ (10)

where J1(·) is the Bessel function of order one, and ψ̂(σ) is a Fourier-Bessel coefficient to be

determined from the surface boundary condition. The above integral is known as a Hankel
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transform and has many properties analogous to the Fourier integral, including an inverse

transform (Morse and Feshbach 1953). Upon substitution of the integral representation

(10) into the modon condition (8), application of the inverse transform obtains a linear

integral equation for the coefficient ψ̂(σ). This derivation, details of which are deferred to

Appendix A, results in the equation

V (σ) ψ̂(σ) = α
{∫ ∞

0
K(σ̄, σ) ψ̂(σ̄) σ̄ dσ̄ + F (σ)

}
, (11)

which is a standard form known as a Fredholm integral equation of the second kind (Kondo

1991). The coefficient V (σ), kernel K(σ̄, σ) and forcing F (σ) are given by the expressions

V (σ) = σ

K(σ̄, σ) =
∫ 1

0
J1(σ̄s) J1(σs) s ds

F (σ) =
∫ 1

0
J1(σs) s

2 ds

(12)

where these integrals are evaluated exactly using standard Bessel identities (Appendix A).

The coefficient V (σ) will be the vehicle for generating the dipole variations of Section 3.

Numerical solutions for ψ̂(σ) given α are simply obtained by matrix inversion after ap-

proximating the integral in (11) by a discrete quadrature (such as Simpson’s rule) over a

sufficiently large interval (0 ≤ σ ≤ Σ). Radial profiles of the surface streamfunction (solid)

and potential temperature (dashed) are shown by the dark curves in Figure 1a. The Fourier-

Bessel spectral amplitudes ψ̂(σ) are shown in Figure 1b (100 of 512 modes shown, Σ = 256).

The line indicates an asymptotic slope of -7/2 which is the characteristic (Fourier-Bessel)

spectral decay expected when the θ-field has a jump in the radial derivative.

The value α ≈ 4.1213 is found by a simple root-finding procedure that enforces the modon

boundary (r = R) to be a separating streamline (Ψ = 0). This feature of the solution is

apparent in the total streamfunction Ψ(x, y, 0) shown in Figure 2. Like other modons, the

4



dipole’s propagation speed is simply proportional to its amplitude. A positive value of c

makes the upper part of the dipole (Figure 2) a warm, cyclonic anomaly, which results in

a modon that is a steady disturbance in an easterly incident wind. The maximum u wind

within these steady vortices is ≈ 7.76c and hence considerably faster than the incident wind.

In time-dependent sQG computations, we have observed this dipole to be an extremely stable

structure.

3. Variations on a Theme

3.1 Asymmetric Dipole

The basic sQG dipole of the previous Section is symmetric, and has no net surface vorticity.

The modon of the barotropic vorticity equation allows a variation in which a superimposed

monopole rider leads to an asymmetric dipole (Flierl et.al. 1983; also attributed to Bliss

in Saffman 1992; Meleshko and van Heijst 1994). In the sQG case, there is also a dipole

variant whose asymmetry causes a constant rotation of its velocity vector, and results in a

circular trajectory (Figure 3). The motion of this asymmetric dipole is steady in a frame of

reference in solid-body rotation about the center of the circular trajectory. Equivalently, we

may consider the dipole to be embedded in a background flow in solid-body rotation about

a point offset (by a distance P ) from the dipole center, so that

Ψ = ψ(x, y, z)− ω

2
(x2 + (y − P )2)

= ψ(r, φ, z) + ωP r sinφ− ω

2
(r2 + P 2)

(13)

where ω gives the counter-clockwise angular frequency. With this background flow, the sQG

Jacobian condition (7) becomes

J

(
ψs + ωP r sinφ− ω

r2

2
, ψs

z

)
= 0 (14)
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yet leaves the Laplace inversion (9) intact. Note that the dropping of the constant ωP 2-term

from (13) does not affect the Jacobian. At this point, one could proceed to pose integral rep-

resentations and derive corresponding integral equations as in the previous Section. However

by invoking linearity and manipulating the basic dipole solution (10), the new streamfunction

can be directly expressed using the same dipole coefficient ψ̂(σ)

ψ(r, φ, z) = ωPR sinφ
∫ ∞

0
ψ̂(σ) J1(σr/R) exp(−σz/R) σ dσ

+ ωR2
∫ ∞

0
ψ̂(σ) J0(σr/R) exp(−σz/R) dσ .

(15)

The first integral is identical to that of the basic dipole (10) since the tangential velocity ωP ,

as the equivalent linear speed, simply replaces c in (7). The second integral of (15) arises from

r2-term in (14) and constitutes an axisymmetric (monopolar) contribution whose r-derivative

is proportional to (10) by virtue of the Bessel identity J0
′ = −J1. This derivative relationship

between the integrals of (15) mirrors the r versus r2-forcing terms in the Jacobian (14), and

is also a feature of the barotropic vorticity dipole (Flierl et.al. 1983). The streamfunction

and potential temperature profiles for the monopolar part is shown by the light curves in

Figure 1a.

Contours of the full streamfunction Ψ are shown in Figure 3 for a trajectory with radius

P = 4R. For positive ω, the large-scale flow is anti-cyclonic; equivalently, such a dipole will

execute a counter-clockwise orbit in a quiescent environment. Note that the sQG axisym-

metric rider is of single-signed vorticity; it differs significantly from the straight trajectory

dipole-with-rider (Flierl et.al. 1981) which possesses no net vorticity and has been observed

to be unstable (Swenson 1986b). In time-dependent computations, this sQG dipole variant

has also been observed to be an extremely robust configuration. Such looping trajectories

for dipoles have also been observed in computations of the barotropic vorticity system (Flierl

et.al. 1983, Haupt et.al. 1993). Finally, note that the particular limit of zero frequency and

large orbital radius (ωR→ 0 and ωP → c) recovers the simple travelling dipole.
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3.2 Dipole in a Finite Layer

The sQG formalism can be extended to a geometry that includes a zero potential temperature

lid at height H. The integral representation for the Laplace solution (10) merely requires a

change to the vertical profile

ψ(r, φ, z) = Rc sinφ
∫ ∞

0
ψ̂(σ) J1(σr/R)

cosh(σ(H − z)/R)

cosh(σH/R)
σ dσ (16)

that ensures θ = ψz vanishes at z = H. The normalization in the denominator (16) is

designed to recover exactly the basic dipole form (10) in the deep-layer limit (H/R → ∞).

This change to the vertical mode structure introduces only a minor difference to the left-side

of the integral equation (11) in the form of the coefficient

V (σ) = σ tanh(σH/R) (17)

The proportionality constant α now becomes a function of the aspect ratio, H/R. This

dependence is shown (dark curve) in Figure 4a.

In the limit of a very thin layer (H/R → 0), the lidded sQG dipole reduces exactly to

the Lamb dipole solution of the barotropic vorticity equation (Lamb 1945, Meleshko etal.

1994). The (surface) disturbance streamfunction ψ(r, φ, 0) becomes

ψ(r, φ, 0)→


Rc sinφ

(
2

z1

J1(z1r/R)

J0(z1)
− r

R

)
inside (0 ≤ r < R)

Rc sinφ
(
−R
r

)
outside (R < r <∞)

(18)

and α ∼ (z1)
2H/R (shown as the asymptote in Figure 4a) where z1 ≈ 3.8317 is the first zero

of the J1(·) Bessel function. This illustrates the general principle that the largest horizontal

scales (which are also deep) of this finite layer sQG dynamics behave roughly as those of

the barotropic vorticity equation. Furthermore, as the layer thins, a smaller amplitude

disturbance is sufficient to maintain the same dipole translation speed. This can be seen

from the dependence of the normalized θs
max on the aspect ratio, also shown (light curve) in
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Figure 4a. Lastly, the barotropic limit provides a useful benchmark on the accuracy of the

numerical solver which has been verified against very small values of H/R � 0.01 without

difficulty (not shown).

For this case, and all of the following dipole variants, the spatial structures differ only

slightly from the basic dipole and are not shown. In addition, the asymmetric component of

Section 3.1 can be also combined with this variation.

3.3 Dipole in a Horizontal Temperature Gradient

The effect of a background environment with a horizontal gradient of potential temperature

can be incorporated without introducing interior PV. This is case with Eady shear, where

a constant vertical shear of magnitude λ is added to the full streamfunction to balance the

constant horizontal gradient of potential temperature:

Ψ = ψ(r, φ, z) + (c− λ z) r sinφ ; Θ = ψz(r, φ, z)− λ r sinφ . (19)

This modifies the surface potential temperature condition

J(ψs + c r sinφ, ψs
z − λ r sinφ) = 0 (20)

which admits the linear modon relation

ψs
z +

λ

c
ψ =


−α
R

(ψs + c r sinφ) inside (0 ≤ r < R)

0 outside (R < r <∞) .
(21)

Using the same integral representation as (10), the change to the integral equation again

involves the left-side coefficient

V (σ) =

(
σ − λ

c

)
. (22)

For positive shear and westerly flow (λ > 0, c < 0), the left-side factor V (σ) is strictly positive

for 0 ≤ σ < ∞ and numerical solution of (11) proceeds uneventfully. The dependence of α

and θs
max against λ/c < 0 is shown in Figure 4b. These dipoles in shear have been confirmed

to evolve stably in time-dependent sQG simulations.
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With reversed (easterly) uniform flow (λ > 0, c > 0), the factor V (σ) is zero when

σ = σc = λ/c > 0 – the critical value where the dipole speed and vertical decay scale exactly

match those of the family of edge waves with horizontal wavenumber σc/R. Attempts to

solve the integral equation suggest that a singularity in the amplitude ψ̂(σ) coincides with

this vanishing of V (σ). We believe this to be an indication that a steady dipole does not

exist, since such a localized structure (in a time-dependent setting) could possibly radiate

through coupling with these edge waves. One connection that associates σc with such a

radiative process is the following exact, steady solution

ψ(r, φ, z) = J1(σc r/R) sinφ exp(−σc z/R) (23)

which also satisfies (21) in the far-field. The above solution has the undesirable property

of having oscillatory tails in vorticity which have very slow O(1/
√
r) radial decay. Such a

standing wave solution corresponds to incoming Rossby waves from infinity which precisely

conspire with their outgoing radiation to form a steady interference pattern.

3.4 Dipole with Beta

Although including the beta-effect introduces non-uniform PV, there is still a type of dipole

whose dynamics are associated with surface potential temperature. Steady PV dynamics

requires first that the Jacobian condition

J(ψ + c r sinφ,∇2ψ + β r sinφ) = 0 (24)

be satisfied in the interior. This is achieved by replacing the zero PV condition (9) with

∇2ψ − β

c
ψ = 0 (25)

and inverted subject to the boundary condition (8). The general sinφ-mode solution for this

interior condition is

ψ(r, φ, z) = Rc sinφ
∫ ∞

0
ψ̂(σ) J1(σr/R) exp(−

√
σ2 + β/c z/R) σ dσ . (26)
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Modification to the integral equation (11) is again only required on the left-side

V (σ) =
√
σ2 + β/c (27)

and, in contrast to the Eady shear case, the numerical solution now proceeds uneventfully

for easterly flow (β > 0, c > 0). The dependence of α and θs
max on β is shown in Figure 4c.

In analogous fashion to the case of Eady shear, a dipole in westerly flow (β > 0, c < 0)

introduces a change of sign in the square root at σc =
√
−β/c, and the modes below the

cutoff (σ < σc) no longer have upward decay. Here again, a manifestation of this singularity

is a (barotropic) standing Rossby wave

ψ(r, φ, z) = J1(σc r/R) sinφ (28)

that is isentropic everywhere and thus, trivially satisfies the far-field surface conditions. Note

that the Eady shear and beta effects permit steady dipole propagation in directions opposite

to that of linear Rossby waves. In addition, both solutions require a stronger disturbance

than the basic dipole travelling at the same speed.

4. Conclusions

For models such as the barotropic vorticity equation, dipoles provide an exact prototype for a

nonlinear, travelling coherent disturbance. The explicit construction of a three-dimensional

dipole has been shown for a variety of surface quasigeostrophic configurations. As demon-

strated for a lidded finite layer of decreasing height, the sQG dipole is a three-dimensional

equivalent to the barotropic modon. Their comparative dynamics are hence quite similar, as

the sQG dipoles are also found only to travel only in the direction opposite to Rossby wave

phase velocities in the presence of Eady shear or Coriolis beta.

The list of variations presented here is by no means complete, and the construction tech-

nique allows likely extension to weak shear (Swenson, 1986a), tropopause deformation (Rivest

et.al. 1992), and possibly, beyond QG corrections (Muraki et.al. 1999). This methodology
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provides a versatile family of three-dimensional steady disturbances for which we envision

will find use in applications based upon sQG dynamics.
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Appendix A

The derivation of the integral equation (11) relies on the integral relations between ψ(s) and

its Hankel transform ψ̂(σ)

ψ(s) =
∫ ∞

0
ψ̂(σ) Jm(σs) σ dσ

ψ̂(σ) =
∫ ∞

0
ψ(s) Jm(σs) s ds

(29)

where m is any non-negative integer index (Morse and Feshbach 1953). The second integral

thus corresponds to the inversion formula that obtains the ψ̂(σ) coefficient for the integral

representation of ψ(s). Substitution of the integral representation (10) into the modon

relation (8) at z = 0 gives

−
∫ ∞

0
σ̄ ψ̂(σ̄) J1(σ̄s) σ̄ dσ̄ = −RαH(1− s)

{∫ ∞

0
ψ̂(σ̄) J1(σ̄s) σ̄ dσ̄ + s

}
(30)

where s = r/R andH(1−s) denotes the Heaviside step function which is zero for s > 1. Note

also that in (30) the (dummy) variable of integration has been replaced with σ̄. Multiplying

the above by s J1(σs) and integrating from s = 0→∞ results in the integral equation (11).

Note that the finite limits of the integrals for the kernel and forcing (12) are a consequence of

the vanishing of the Heaviside factor for s > 1 (after interchanging the order of the right-side

integrals). The Bessel integrals for the kernel and forcing (12) are given explicitly by

K(σ̄, σ) =



σ̄J1(σ)J0(σ̄)− σJ1(σ̄)J0(σ)

σ2 − σ̄2
for σ̄ 6= σ

(J1(σ))2 − J0(σ) J2(σ)

2
for σ̄ = σ

F (σ) =
J2(σ)

σ
.

(31)
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Figure Captions

Figure 1: (a) Radial profiles of disturbance streamfunction and potential temper-

ature for the basic dipole (dark) and the asymmetric monopole (light).

The basic dipole streamfunction is scaled on Rc, and the potential tem-

perature on c. The monopolar streamfunction is scaled on R2ω, and the

potential temperature on Rω. (b) Log-log scatterplot of Fourier-Bessel

amplitudes ψ̂(σ) as numerically computed from (11).

Figure 2: Contours of the full streamfunction for the basic dipole in a frame where

the dipole is steady. The contour intervals are Rc/2. Positive values of

c correspond to an easterly incident wind.

Figure 3: Contours of the full streamfunction for the asymmetric dipole in a frame

where the dipole is stationary. The contour intervals are RωP where

P = 4R. Positive values of ω correspond to an anticyclonic large-scale

vortical flow.

Figure 4: Variation of the α parameter (dark) for each of the dipole variants:

(a) finite layer, (b) shear, and (c) beta. The thin-layer (H/R → 0)

asymptote is shown (thin dashed) for case (a). Also shown (light) is

the variation of θs
max normalized relative to the basic dipole of Section 2

(θs
max ≈ 9.24).
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