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Abstract

The most familiar illustrations of downstream topographic waves are the streamline

plots from the original linear wave studies of Queney. For steady flow past a two-

dimensional ridge, Queney’s downstream radiation patterns were obtained through

approximations of the Fourier integral which describes the dispersion of linear grav-

ity waves. In the case of constant stratification with rotation, a high-accuracy nu-

merical quadrature of the Fourier integral reveals significant departures in the near-

ridge streamfunction pattern from the original depictions. This numerical accuracy is

achieved by a specialized quadrature scheme for computing the singular Fourier inte-

grals encountered in this regime of order-one Rossby number. In addition, a steepest

descent approximation is presented which resolves the breakdown of Queney’s analy-

sis above of the summit and quantifies the unusually weak decay of wave amplitude

with height.



1. Introduction

The foundations for our understanding of atmospheric wave generation by mesoscale topog-

raphy were established in the linear analyses of Queney (1947, 1948) for steady flow past

a two-dimensional ridge. In these seminal works, downstream radiation patterns were in-

ferred from the dispersion characteristics of linear gravity waves. Queney’s 1948 streamline

figures, based upon approximations to a Fourier integral, are frequently reproduced in re-

views and texts and are recognized as the canonical illustration of downstream topographic

waves. Specifically in the case of constant stratification with rotation, we have noted signifi-

cant departures in the near-ridge streamfunction pattern between the original approximation

(Queney 1948, Figure 3) and direct quadrature of the Fourier integral. Of the cases studied

by Queney, the one with rotation is most problematic as the Fourier integral is singular at the

inertial wavenumber. Surprisingly, it seems that there is little awareness of this discrepancy,

despite that accurate computations have occasionally appeared in the literature (Durran &

Klemp 1983, Pierrehumbert 1986, Garner 1999). 1 Here we present an updated study for

steady topographic waves in a rotating, stratified, hydrostatic flow.

In this rethinking of the Queney problem for order-one Rossby number, several new an-

alytical tools for understanding linear topographic waves have been developed. The first is

a highly accurate quadrature scheme for the Fourier integral. Our approach to the Fourier

integration abandons the usually efficient fast-Fourier transform, and directly addresses the

resolution of the inertial singularity. Although the implementation described here is specific

to the two-dimensional ridge, similar methodologies are adaptable to the case of three-

dimensional, linear flow around mountain topography, where both the nonrotating and ro-

tating cases yield singular Fourier integrals. In the latter case (order-one Rossby number),

steady flows from direct quadrature of the three-dimensional Fourier integral have yet to

1Subtle discrepancies discovered during model development are still being reported; one instance as

recently as (Hsu, et.al. 2001) for the non-rotating, non-hydrostatic case.
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appear in the literature. The second is a steepest descent approximation to the Fourier

integral which produces a remarkably uniform representation of the solution that resolves

the breakdown in Queney’s (1947) analysis at the summit zenith. This new approximation

obtains a formula for the slow vertical decay of the mountain waves, and also suggests that

a weak, near-inertial wave is produced by back-scattering from the downslope surface. The

last is a set of surface formulas which connects these finite Rossby number wave flows with

the zero Rossby number quasigeostrophic (QG) flow. These formulas complement previous

surface results of Bretherton (1969) and Pierrehumbert (1984).

2. The Linearized Wave Problem

The fluid dynamical setting considered by Queney was the steady, linearized equations for

an incompressible, Boussinesq atmosphere in two dimensions x, z. The flow is assumed to

be rotating (f -plane) and hydrostatic, and to have constant stratification. Under these

assumptions, the linear primitive equations are

ux + wz = 0

U ux − f v = − ρ−1
0 px

U vx + f u = 0

0 = − ρ−1
0 pz + b

U bx + N2 w = 0

(1)

where the winds are denoted by u, v, the vertical motion by w, buoyancy anomaly by b, and

pressure by p. The external parameters are: incident wind U , Coriolis parameter f , Brünt-

Vaisala frequency N and mean density ρ0. The linearized topographic boundary condition

for a no-normal flow surface z = h(x) is

w = U hx at z = 0 . (2)

2



Lastly, decay or outward wave radiation conditions are imposed on the linear modes in the

far-field.

The primitive equations (1) can be manipulated into a single equation involving only the

buoyancy anomaly b(x, z)

k2
s bxx + k2

f bzz + bxxzz = 0 (3)

where the Scorer parameter, ks = N/U , and inertial wavenumber, kf = f/U , are coefficients

associated with stratification and rotation. Within this linear limit, the topographic con-

dition (2) is equivalent to a buoyancy condition on the surface so that b(x, 0) = −N2 h(x).

The Fourier integral solution of (3) is

b(x, z) = −N2

π
Re

{∫ ∞

0
ĥ(k) eikx eim(k)z dk

}
(4)

where ĥ(k) is the Fourier transform of the topography

ĥ(k) =
∫ +∞

−∞
h(x) e−ikx dx (5)

(Queney 1947, p64). The linear dispersion relation for the buoyancy anomaly equation (3)

k2
s k2 + k2

f m2 − k2 m2 = 0 (6)

determines the vertical mode number m(k)

m(k) =



i ks k√
k2

f − k2
for 0 ≤ k < kf

ks k√
k2 − k2

f

for kf < k < +∞

(7)

where the sign choices of m(k) embody the far-field conditions at z → +∞ (Pierrehumbert

1984). The long waves (0 ≤ k < kf ) decay as z → +∞, and the short waves (kf < k < +∞)

radiate energy upward.
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3. Streamline Comparisons

As in Queney’s original work, we focus on a particular choice of topography, the so-called

Witch of Agnesi, or bell-shaped ridge

h(x) =
HL2

L2 + x2
; ĥ(k) = π HL e−|k|L (8)

as a representative profile for an isolated ridge with height H and horizontal length scale L.

The buoyancy solution (4) specific to the above ridge (8) is

b(x, z) = −N2H Re
{∫ ∞

0
e(ix−L) k eim(k)z Ldk

}
= −N2H Re{I(x, z)} (9)

which defines the Fourier integral I(x, z). The total buoyancy field, including the background

stratification, is given by

bT (x, z) = N2 z + b(x, z) , (10)

so that contours of bT (x, z) correspond to the steady streamlines of the flow over the ridge.

Conveniently, this bell-shaped topographic ridge (8) also has an exact QG solution (Smith

79a; Gill 1982, p282)

bQG(x, z) = −N2H

{
kfL (kfL + ksz)

(kfL + ksz)2 + (kfx)2

}
(11)

which satisfies just the second-order terms of (3). This QG solution describes the fore-aft

symmetric uplifting of the flow over the ridge and is devoid of waves.

Queney’s figure (1948, p22) is reproduced here as Figure 1a with the ridge parameters

H = 1 km and L = 100 km chosen for unity Rossby and Froude numbers

R ≡ U

f L
=

1

kfL
= 1 ; F ≡ U

N H
=

1

ksH
= 1 . (12)

The streamlines zQ(x) in the Queney’s figure are the approximate inversion of (10) based

upon vertical displacement

zQ(x) = z∞ − 1

N2
b(x, z∞) (13)
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which is obtained by integrating the vertical motion along a fixed height z∞. Although

these displacement streamlines only approximate the true streamlines (steady isentropes),

their use is consistent within the linear limit of large Froude number. Figure 1b represents a

recalculation of the displacement streamlines (13) by direct quadrature of the Fourier integral

(9) at parameter values (12). The details of the high-order numerical scheme used in the

quadrature of the Fourier integral I(x, z) are deferred to Appendix A.

Although the original Queney figure captures the essential features of the wave flow,

there are several noteworthy shortcomings that become apparent in the quadrature solution

of Figure 1b. Above the ridge summit, the computed pattern of wavecrests is much more

regular than originally rendered. This is especially the case at lower altitudes, where the

first maxima of upward displacement clearly occur upstream of the ridge summit, and there

is a distinct phaseline of abrupt downdrafts associated with strong downslope winds. These

features are common to the non-rotating cases of Queney. In the downstream wake, the

quadrature streamlines show a mean upward displacement. This upward tendency is a vestige

of the quasigeostrophic response (11) to the topography. Also, the streamline oscillations

decay more slowly downstream and persist much closer to the surface than is suggested in

Queney’s figure. This is consistent with the analysis of Pierrehumbert (1984) which indicates

a gradual x−1/2 decay of the oscillations in the surface winds u and v. Overall, the features

in Figure 1b are in complete agreement with Pierrehumbert (1986).

The discrepancies between Figures 1a and 1b are not unexpected given the nature of

Queney’s (1947) approximations. The far-field oscillations are in good agreement, as they

are obtained from stationary phase formulas which are asymptotically valid for large x, z > 0

(Queney 1947, equation 119). The stationary phase method also gives a QG response in

the far-field upstream (Queney 1947, equation 121). If Queney had included this effect

symmetrically on the downstream side as well, the upward tendency of the streamlines in

the lee would have been correctly incorporated. The remaining descrepancies stem from
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the difficulties Queney encountered in the two transition zones where the stationary phase

method could not be applied: the zenith direction aloft (x ≈ 0), and the near-surface

downstream (z ≈ 0). As will be discussed in Section 5, this breakdown of the stationary phase

analysis can be partially circumvented by the use of the steepest descent approximation.

4. Linearized Flow Plots

As a benchmark of linearized theory, solution fields for the associated disturbance quantities

are presented in Figures 2a-d: buoyancy anomaly (b), vertical motion (w), across- and along-

ridge winds (u, v). These flow quantities are related to the buoyancy integral (4) through

differentiations and integrations

w = − U

N2
bx ; u =

U

N2
bz ; vx = − f

U
u , (14)

for which the corresponding Fourier integral expressions are easily derived. Quadrature of

these quantities using the desingularization strategy of Appendix A is also straightforward.

Figures 2a-d are computed for unity Rossby number (R = 1.0), but are independent of

Froude number up to a scaling of the topographic height H. Hence, the only Froude number

dependent aspect of these figures is the shaded ridge topography (for F = 3), which is

included for visual reference only.

In Figure 2a (contour interval: 0.15 N2H), the cold (negative) bias of the buoyancy

anomaly comes from the QG-like response (11) associated with the substantial contribution

of the integral near k = 0. All solid contours indicate zero values and are identical to

those shown in Figure 1b. Vertical motion, shown in Figure 2b (contour interval: 0.25 fH),

is concentrated aloft of the ridge. This contrasts with the across- and along-ridge winds

shown in Figures 2c,d (contour interval: 0.15 NH) which have greater downstream extent.

These distributions of u and w are consistent with the buoyancy anomaly which also serves

as their streamfunction (14). In addition, the leftmost zero contour in Figure 2c shows

that the region of accelerating across-ridge flow begins a considerable distance upstream
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at altitudes above the ridge height. As expected, the maximum u is associated with the

downslope winds in the lee of the ridge. Also apparent in the along-ridge v flow is the

asymmetry in the strengths and positions of the windward barrier jet and the jet in the

lee of the ridge. A common feature of both wind plots (Figures 2c,d) are the near-inertial

oscillations in the low-level winds downstream of the ridge. These structures are associated

with the downstream oscillations in the surface (z = 0) Greens function of Pierrehumbert

(1994) and are attributable to wavenumbers just above the near-inertial singularity in the

integrand (k ≈ kf ). Generally, the features in Figure 2a-d conform well with the small

amplitude case of Trüb and Davies (1994, Figure 7) which is obtained by a time-relaxation

of a fully nonlinear numerical model. Although not shown, our numerical quadrature at

Rossby number 2.0 is in complete agreement with the careful calculation of the buoyancy

anomaly (disturbance streamfunction) by Garner (1999).

5. Steepest Descent Approximation

An alternative, analytical perspective on the wave solution (9) is obtained by the method

of steepest descent. In the spirit of Queney, these approximate formulas involve only ele-

mentary functions (powers and exponentials), but are well-behaved in the transition regions

associated with the summit zenith and downstream surface. Figure 3 is a representation of

Queney’s original figure where the displacement streamlines are now obtained by steepest de-

scent. Although this approximation cannot achieve the accuracy obtained through the direct

numerical quadrature (Figure 1b), the closed-form expressions give a different quantitative

insight into the Fourier solution (9).

The analysis that follows is specific to the choice of the bell-shaped ridge, but can be

adapted to more general topography. The steepest descent approximation for the buoyancy

integral I(x, z) defined in (9) involves a three-term sum of contributions: a quasigeostrophic
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response, a primary and a secondary wave

I(x, z) ∼ IQG(x, z) + IS1(x, z) + IS2(x, z) . (15)

Explicit formulas for evaluating each of these terms are stated below, but the derivation of

these three terms is deferred to Appendix B. The IQG(x, z) term represents a contribution

from the integrand near k = 0, whose real part recovers the buoyancy field of quasigeostrophic

theory (11)

IQG(x, z) =
kfL

ksz − kf (ix− L)
. (16)

The two wave terms, IS1(x, z) and IS2(x, z), are obtained from steepest descent formulas

that require careful evaluation of the multi-valued, complex functions: square and cube

roots, and the complex angle (arg). These formulas involve the exponent of the integrand

(9), denoted by φ(k), which is extended to complex values of k

φ(k) = (ix− L) k +
ikskz

(k − kf )
1/2 (k + kf )

1/2
(17)

by defining branch cuts −7π/4 < arg(k − kf ) < +π/4 and −π < arg(k + kf ) < +π that are

consistent with (7). The primary wave term, IS1(x, z), is then obtained from the steepest

descent formula

IS1(x, z) ∼ σ1

√√√√ 2πL2

|φ′′(κ1)|
exp {φ(κ1)− i arg(−φ′′(κ1)/2)} . (18)

where κ1(x, z) and σ1(x, z) are defined below. The analogous expression also applies to the

secondary wave IS2(x, z) but with different values of κ2 and σ2. The complex wavenumbers

κ1(x, z) and κ2(x, z) are defined by

κ(x, z) = kf

√
µ(x, z) = kf

√√√√1 +

(
iksz

ikfx− kfL

)2/3

(19)

where the primary and secondary κ’s and µ’s are distinguished by particular choices of the
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complex square and cube roots. These choices are summarized below

−2π/3 < arg(µ1) < 0 ; 0 < arg(µ2) < 2π/3

−π/3 < arg(κ1) < 0 ; 0 < arg(κ2) < π/3

−π/2 < arg(−φ′′(κ1)/2) < π/2 ; −π < arg(−φ′′(κ2)/2) < 0 .

(20)

Also included is the range of complex angles for the argument of φ′′(κ) appropriate for (18).

Finally, the values of σ1(x, z) and σ2(x, z) are either zero or one

σ(x, z) =


1 for Im{φ(κ(x, z))} > 0

0 otherwise

, (21)

which indicates whether or not the corresponding wave term contributes to the sum (15).

The inclusion regions implied by (21) are indicated in Figure 3, downstream of the gray line

A for the primary wave (σ1 = 1), and downstream of the gray line B for the secondary wave

(σ2 = 1). These jumps in σ are responsible for the small discontinuities apparent in the

displacement streamlines at lower altitudes.

The physical interpretation of the steepest descent formula (15) is that the buoyancy

anomaly is composed of a ridge-symmetric part which is approximately the quasigeostrophic

response, and asymmetric components which are primary and secondary wave fields charac-

terized by complex wavenumbers κ1 and κ2. The primary wave field is analogous to Queney’s

(stationary phase) wave field since κ1 approaches the stationary phase wavenumber (1947,

equation 117 up to the substitution 114) in the downstream far-field. In addition, the far-

field phaselines of constant Im{φ(κ1)}, tilted upwards and upwind, coincide with the phase

curves given in Queney (1948, equation 11).

A new feature from the steepest descent analysis is the secondary wave of complex

wavenumber κ2, which is an extremely weak contribution that is significant only very near

the downstream surface. Two intriguing characteristics of the κ2-wave are that its phaselines

tilt upward and downstream, and that its maximum amplitude is located on the steepest

part of the lee downslope. This reverse tilt of the waves is consistent with group velocities
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that are upward, but downstream. Additionally, these waves are restricted to be below the

gray line B in Figure 3, and are a near-inertial phenomenon with Re{κ2} ≈ kf . These facts

suggest the interpretation that the secondary wave is generated at the surface, and is a scat-

tered wave required to satisfy the downslope topographic boundary condition in the presence

of the primary wave. It is however debatable whether this wave has much relevance beyond

the scope of idealized linear wave models, since it is much weaker than the primary wave

and strongly depends on the exact nature of the surface boundary condition. Nonetheless, it

does represent direct analytical evidence for the generation of a secondary wave field through

surface interactions.

Finally, Queney notes that the failure of the stationary phase method due aloft coincides

with the divergence of the local wavenumber to infinity. In contrast, the steepest descent

saddlepoint κ1 (19) remains finite at the summit zenith and the local wavenumber (now

complex) becomes near-inertial (Re{κ1} ≈ kf ) slightly upstream of the ridge. Specifically, in

the zenith direction (x = 0, large z) there is no breakdown of the steepest descent formulas,

and an explicit approximation for the primary wave field (18) is obtained (for order-one R

and smaller)

IS1(0, z) ∼
√

2π

3
(Rksz)

1
6 exp

−3
√

3

4

(
ksz

R2

) 1
3

 cos

ksz +
3

4

(
ksz

R2

) 1
3

− π

12

 (22)

which quantifies an unusually weak decay in the vertical. The significant feature in the above

formula is the z
1
3 exponential decay which has the effect of making the second e-folding height

of wave amplitude eight times higher than the first. This result, which cannot be derived by

the stationary phase method, has also been verified with the direct quadrature of (9) and

gives a very good approximation at heights above one wavelength (≈ 6km). At the surface,

the steepest descent approximation does recover the topographic buoyancy condition, but is

weakly nonuniform as it does not imply correct values for the surface winds. However, since

the original integral (4) is less singular when z = 0, special surface formulas can be derived.

These are discussed in the next Section.
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6. Near-Inertial Surface Waves & the QG Limit

Near-inertial oscillations of the surface (z = 0) winds in the lee of the ridge were analytically

addressed in the Greens function analysis of Pierrehumbert (1984). For the along-ridge

v-winds, the far-field upstream resembles a poleward geostrophic jet, whereas the far-field

downstream displays ageostrophic oscillations whose amplitude decays as x−1/2. In this

Section, we present formulas for arbitrary topography that connect surface winds at finite

Rossby number to zero Rossby number QG values.

At the surface (z = 0), the quasigeostrophic v-winds for flow past linearized topography

h(x) has the Fourier integral solution

vQG(x, 0) = −N

{
1

2π

∫ +∞

−∞

|k|
k

FT[h(x)] eikx dk

}
(23)

where FT[·] denotes the Fourier transform. The corresponding Fourier integral for Queney’s

linear model is

v(x, 0) = −N

 1

2π

∫ +∞

−∞

|k|
k

FT[h(x)]
kf

i
√

k2 − k2
f

eikx dk

 . (24)

However for the square root branch corresponding to (7), we have the fortuitous result

FT [H(x) kf J0(kfx)] =
kf

i
√

k2 − k2
f

(25)

where H(·) is the Heaviside step function and J0(·) is a Bessel function of order zero. It

follows from the Fourier convolution formula that

FT[h(x)]
kf

i
√

k2 − k2
f

= FT
[∫ +∞

0
h(x− x̃) kfJ0(kf x̃) dx̃

]
(26)

and by direct comparison it is seen that the integral (24) takes precisely the form of a QG

solution (23) for a topography given by the equivalent wave topography heq(x)

heq(x) =
∫ +∞

0
h(x− x̃) kfJ0(kf x̃) dx̃ . (27)

11



Figure 4 shows the equivalent topographies (units: H) for the bell-shaped ridge atR = 1 and

R = 1/3 along with their surface v-winds (units: NH). In accordance with quasigeostrophic

principles, poleward and equatorward jets are associated with upslopes and downslopes of

heq(x). Especially noteworthy is the singular way in which the quasigeostrophic limit is

approached. In addition to the diminishing of wave amplitude, wavelength also shortens

proportionally with the vanishing Rossby number. Lastly, note that the formula (27) is

consistent with quasigeostrophy, since kfJ0(kfx) integrates like a delta function in the zero

Rossby number limit (kf →∞).

By similar Fourier arguments, analogous expressions linking the finite Rossby number

surface winds to QG v-winds can be obtained

u(x, 0) = −
∫ +∞

0
v QG

x (x− x̃, 0) kfJ0(kf x̃) dx̃

v(x, 0) =
∫ +∞

0
v QG(x− x̃, 0) kfJ0(kf x̃) dx̃ .

(28)

A by-product of above surface integrals are far-field (x → +∞) asymptotic formulas for the

bell-shaped topography

u(x, 0) ∼ NH R e−1/R
√

2π

kfx
cos(kfx− π/4)

v(x, 0) ∼ −NH R e−1/R
√

2π

kfx
sin(kfx− π/4)

(29)

which recover the Greens function results of Pierrehumbert (1984) up to an extra factor of π

that is the x-z area of the ridge (8). This explains the odd coincidence between the far-field

results of Pierrehumbert (1984) and the asymptotics of the Bessel functions (Abramowitz &

Stegun 1970).

A final connection to the Bessel functions involves the calculation of the wave drag

(Bretherton 1969)

D =
∫ +∞

−∞
p(x, 0) hx(x) dx =

ρ0 UN

π

∫ +∞

kf

√
k2 − k2

f

∣∣∣ ĥ(k)
∣∣∣2 dk , (30)
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which is derived using the Fourier arguments of Blumen (1965). The integral formula (30)

indicates the importance of wavenumbers above kf in determining wave drag. As a conse-

quence, in numerical computations of drag from surface pressure, it is imperative that these

wavenumbers be handled accurately. However, for the special case of the bell-shaped ridge,

this integral can be expressed using a modified Bessel function of order one (Smith 1979b,

Gill 1982)

D = ρ0 UNH2 π

2R
K1

(
2

R

)
∼ ρ0 UNH2 π

4

√
π

R
e−2/R . (31)

along with an asymptotic approximation valid for small R. As a result of the exponentially

small Rossby number dependence, wave drag remains negligible until a sharp onset only

after the Rossby number exceeds about 1/3 (Figure 5). Similar onsets are implied by the

surface formulas (27,28).

7. Conclusions

Several new analytical results have been presented in this revisiting of Queney’s problem

at order-one Rossby number. Specialized quadratures for the rotating case have produced

high-accuracy plots for anomalies in buoyancy, winds and vertical motion. By the nature of

the desingularization procedure and the coordinate change (32), these quadratures maintain

accuracy over a wide range of Rossby numbers. Directly above the ridge, a problematic region

in Queney’s analysis, an asymptotic formula for the unusual slow decay of the wave amplitude

has been obtained (22) by the method of steepest descent. In addition, this analysis also

suggests the existence of a weak back-scattered wave associated with the downslope. The

singular nature of the QG limit to short wavelength waves has been illustrated via surface

wind (29) and drag (31) formulas. Especially noteworthy is the onset appearance of waves

with increasing Rossby number that is implied by these results.

One of the motivations of this work is to raise awareness of the discrepancies in Queney’s

streamline figure with rotation. The more important idea however is the notion that linear
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topographic waves at finite Rossby number represent an intuitive intermediary between the

non-rotating, hydrostatic and quasigeostrophic limits. This transition, from infinite to zero

Rossby number, bridges the extremes from non-rotating waves concentrated aloft of the

ridge, to quasigeostrophic, symmetric uplifting of isentropes. Although illustrated previously

in Pierrehumbert (1986, Figure 21.5), and Trüb and Davies (Figures 5 and 7), this aspect

bears reiteration. In terms of the buoyancy anomaly (Figure 6), these intermediate flows

are characterized by the downstream dispersion of waves, whose surface signature has the

inertial wavenumber. With decreasing Rossby number, these waves weaken and shorten,

eventually giving way to the appearance of the symmetric, QG cold anomaly.
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Appendix A – Numerical Quadrature of the Fourier Integral

With the inertial singularity in the dispersion relation m(k), the integrand (4) for z > 0

undergoes an infinite number of oscillations for k approaching kf from above. Discrete

numerical quadrature can result in aliasing errors which are manifested by the appearance of

spurious waviness that is especially conspicuous in zero contours, or artifacts far upstream of

the topography. Figures 1b and 2a-d have been computed using a desingularized trapezoidal

rule which results in high-order (better than third-order in most cases) accurate schemes. The

numerical methodology is based upon a singularity reduction strategy (Davis & Rabinowitz

1984, Section 3.3) and is illustrated here for the specific integral I(x, z) (9).

First, a trigonometric change of variables is introduced to map the quadrature onto a

finite interval

k =



kf cos θ where −π

2
≤ θ < 0 corresponds to 0 ≤ k < kf

kf sec θ where 0 < θ <
π

2
corresponds to kf < k < +∞ ,

(32)

which is motivated by the Queney analyses of (1947, 1960). The integrand in the θ-coordinate

is plotted in Figure 7a for the location (x, z) = (−200π, 4π). Explicitly shown is an example

discretization of 200 points in the decay interval (−π/2 < θ < 0) and 400 points in the wave

interval (0 < θ < π/2). At this location upstream and above the topography, the buoyancy

anomaly (b ≈ −0.06) is small by virtue of a nearly complete cancellation of the oscillatory

quadrature. Numerical error due to loss of coherency of the type illustrated in the inset

(Figure 7b) can ultimately lead to spurious waves in physical plots.

The basic idea for accurately evaluating the wave part of the integral

Iw(x, z) = kfL
∫ π/2

0
exp {kf (ix− L) sec θ} exp {iksz csc θ} sin θ

cos2 θ
dθ (33)

is to decrease the amplitude of the rapid oscillations near the θ = 0+ endpoint. This can be
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done through knowledge that the class of integrals

En(ksz) =
∫ π/2

0
exp {iksz csc θ} sinn θ cos θ dθ (34)

can be evaluated exactly via the recursion

En(ksz) =



Ei(−iksz) for n = −1

eiksz +
iksz En−1(ksz)

n + 1
for n = 0, 1, 2 . . . .

(35)

The index n = −1 integral is a special function called the exponential integral (Abramowitz

& Stegun 1970)

Ei(y) =
∫ ∞

y

exp {−u}
u

du (36)

which can be accurately and efficiently evaluated by means other than direct quadrature.

Combining (33) and (34) with n = 1 gives the integral relation

Iw(x, z) = kfL exp {kf (ix− L)} E1(ksz)

+ kfL
∫ π/2

0
Aw(θ) exp {iksz csc θ} sin θ cos θ dθ

(37)

where the amplitude function Aw(θ)

Aw(θ) = sec3 θ exp {kf (ix− L) sec θ} − exp {kf (ix− L)} (38)

has a second-order zero at θ = 0. With the higher-order zero at the singular endpoint, a

trapezoidal rule quadrature of the de-singularized integral (37) is better than third-order

accurate (Davis & Rabinowitz 1984, Section 2.9). Computations give an estimate of 3.6 for

the rate of convergence; and only 400 points are required to eliminate the wavy artifacts

from the zero contours.

Although unnecessary (since the infinite decay rates at θ = π/2 do not introduce aliasing

errors), a similar enhancement of accuracy is implemented for the decay part of the integral

(9)

Id(x, z) = −kfL
∫ 0

−π/2
exp {kf (ix− L) cos θ} exp {ksz cot θ} sin θ dθ . (39)
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In this case, fourth-order accuracy is achieved for trapezoidal quadrature of the integral

Id(x, z) =
kfL

ksz − kf (ix− L)

+ kfL
∫ 0

−π/2
Ad(θ) exp {[ksz − kf (ix− L)] cot θ} csc2 θ dθ

(40)

since the amplitude function Ad(θ)

Ad(θ) = − sin3 θ exp {kf (ix− L) (cos θ + cot θ)} − 1 (41)

also has a second-order zero at θ = −π/2. For comparison, the integrands of the remaining

quadratures in (37,40) are shown in Figure 8.

Minor variations on this desingularization scheme were used for the quadratures of w, u, v

shown in Figures 2b-d. This approach also generalizes to arbitrary topography with suffi-

ciently fast wavenumber decay. Note however that ĥ(k) is required on a nonuniform dis-

tribution over wavenumber k (uniform in θ) and fast-Fourier methods cannot be used for

the forward transform. Similar desingularization strategies apply to three-dimensional, lin-

ear flow around mountain topography, where both the nonrotating and rotating cases yield

singular Fourier integrals. In the nonrotating case, Fourier quadratures for arbitrary three-

dimensional topography have required unusually large discretizations to remove periodic and

aliasing artifacts (Epifanio & Durran 2001).

Appendix B – The Steepest Descent Approximation

An asymptotic method described in many applied mathematical texts (Hinch 1991; Bender

& Orszag 1978; Carrier et.al. 1966), the method of steepest descents is a generalization of the

stationary phase method and is appropriate for Fourier-type integrals with complex expo-

nential integrands. Deriving a steepest descent approximation involves two steps: changing

the path of integration to the steepest descent path; and estimating the integral from end-

point/saddlepoint approximations, places where the exponential integrand is largest. The
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steps for deriving the approximation (15) are outlined below, and assumes only a rudimentary

background in complex function theory.

The focus of the method of steepest descent is the complex-valued exponent φ(k) as

defined by (17) for the integral (9)

I(x, z) =
∫ ∞

0
e(ix−L) k ei m(k) z L dk =

∫
C

eφ(k) L dk . (42)

The standard complex path of integration C is shown in Figure 9a, where the passing of C

below the branch point (indicated by B) at k = kf is determined by consistency between the

complex branch choice (17) and the radiation condition (7). The key theorem from complex

function theory is that the value of the integral (42) is the same for all paths that go from

k = 0 to k → ∞ and pass below the branch point singularity B. This path-independence

allows the freedom to choose an equivalent path C ′ where the imaginary part (or phase) of

φ(k) is a (piecewise) constant, and the integration reduces to the evaluation of an integral

whose integrand is positive and real∫
C

eφ(k) L dk → ei Im{φ(k)}
∫
C′

eRe{φ(k)} L dk . (43)

In fact for the Queney problem, the new path C ′ consists of up to three sections, each with its

own constant phase Im{φ(k)} and results in the three-term approximation for I(x, z) (15).

Grayscale contouring of Re{φ(k)} is shown in Figures 9b-d for three illustrative values

of (x, z). The axes are the real and imaginary parts of k. The darker shades indicate

large negative values for Re{φ(k)} where eRe{φ(k)} is exponentially small. The lighter shades

indicate where the integrand is larger. The bold solid (zero phase) and dashed (positive

phase) contours indicate steepest descent paths of constant Im{φ(k)}. The thick white line

indicates the choice of the branch cut over which (k − kf )
1/2 in φ(k) is discontinuous (17).

Over the full range of x and positive z, there are three cases to consider. This distinction

leads to the identification of the upstream, aloft and downslope regions of Figure 3.

For the first step, there are three distinct cases for defining the path of steepest descent

C ′. In the upstream case (Figure 9b: x = −400km, z = 3 km), the steepest descent path C ′
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is from the origin A to ∞1 and follows the zero phase contour (bold solid line). This path

can be reconnected with the positive real k-axis (the original ∞ in Figure 9a) at large values

of |k| where eφ is exponentially small (darker shading), and so does not contribute to the

integral. Note that the largest contribution of the integral will be from the vicinity of k = 0

(lighter shading). For larger values of x and aloft of the mountain (Figure 9c: x = 100km,

z = 3 km), the zero phase path from the origin A now leads to the branch point B (where eφ

goes to zero). The integration is then continued along a different constant phase path from

B through S1 to ∞1. The exponent Re{φ(k)} is again largest near k = 0, but also achieves

a local maximum at the saddlepoint S1 (which must also be a crossing point of equi-phase

contours). The saddlepoint condition for the location k = κ1 of S1 is φ′(κ1) = 0. Finally in

the downslope case (Figure 9d: x = 100km, z = 3 km), the steepest descent path C ′ follows

the course: A, ∞2, S2, B, S1, ∞1 where the new saddlepoint S2 is also a local maximum of

Re{φ(k)}.

The second step estimates the most significant contributions to the integral (42) along

the path C ′ from locations where the exponent Re{φ(k)} has local maxima. For the three

cases (Figures 9b-d), the three possible contributions come from: the endpoint A (k = 0),

and the saddlepoints S1 and S2. These correspond to the three terms defined in (15). Local

to the endpoint A, the approximation IQG (16) is obtained by replacing φ(k) with its linear

Taylor series and integrating from k = 0 → ∞ (any direction where the integral converges

gives the same result)

IQG(x, z) ≈
∫ ∞

0
eφ′(0) k L dk = − L

φ′(0)
=

kfL

ksz − kf (ix− L)
. (44)

Local to a saddlepoint S, the approximation IS (18) is obtained by replacing φ(k) with its

quadratic Taylor approximation at k = κ and integrating along any line L over which the
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integral converges

IS(x, z) ≈ eφ(κ)
∫
L

eφ′′(κ) (k−κ)2/2 L dk

=

√
2πL2

|φ′′(κ)|
exp {φ(κ)− i arg(−φ′′(κ)/2)} .

(45)

The linear Taylor term is absent because of the saddlepoint criterion φ′(κ) = 0, which can

be used to obtain (19) as well as the simplified forms

φ(κ) =
(ix− L)κ3

k2
f

; φ′′(κ) =
3(ix− L)κ

κ2 − k2
f

(46)

for use in the steepest descent formula (45). The estimation of the integral by saddlepoints

fails only at the surface z = 0 where the saddlepoints are degenerate with the branch point.

In the case of the buoyancy integral, the saddlepoint contributions happen to be zero so that

this degeneracy is of no consequence. Applying steepest descent to the u or v winds however

is invalid at z = 0.

More generally, path-independence of the integral (10) requires only that the integrand

be an analytic function (excepting the branch cut), and so will hold for a broad class of

topographies h(x). It seems however that a generic feature of such analyses will be the

characterization of the solution into quasigeostrophic, primary and secondary wave contri-

butions.
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Figure Captions

Figure 1: Comparison of displacement streamlines from: (a) Queney (1948, p22), and

(b) numerical quadrature of the Fourier integral (9). The streamlines (13)

are shown as thick dark lines (for z∞ at intervals of π/4). Also shown are the

undisturbed streamlines (thin) and phaselines of zero vertical displacement

(dashed).

Figure 2: Contours of (a) buoyancy anomaly b, (b) vertical motion w, (c) across-ridge

disturbance winds u and (d) along-ridge winds v from direct Fourier quadra-

tures with R = 1. Positive and zero contours are solid, negative contours

are dashed. Topography corresponding to F = 3 is indicated in shaded gray.

Figure 3: Displacement streamlines from steepest descent approximation. The stream-

lines (10), shown as thick dark lines, correspond to the same values as in

Figure 1. Also shown are the undisturbed streamlines (thin) and phase-

lines of zero vertical displacement (dashed). The gray lines demarcate the

upstream, aloft and downslope regimes of the steepest descent theory.

Figure 4: Surface topography h(x) and quasigeostrophic (R = 0) surface v-winds for

the bell-shaped topography (8) are shown by gray lines. For Rossby numbers

R = 1 (solid) and R = 1/3 (dashed), the surface v-winds (24) implied by

h(x) are exactly the quasigeostrophic v-winds corresponding to the heq(x)

topographies (27).

Figure 5: Wave drag (units: ρ UNH2) versus Rossby number.

Figure 6: Buoyancy anomaly as in Figure 2a, but for varying mountain widths (a)

L = 50km (R = 2) and (b) L = 200km (R = 1/2).
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Figure 7: (a) Plot of the integrands of Id(θ) (39) and Iw(θ) (33) for a location

(x, z) = (−200π, 4π) that is upstream and above the ridge. (b) Close-up

of the discretization near the inertial singularity showing loss of coherency

of the oscillations in the integrand.

Figure 8: (a) Plot of the desingularized integrands of (40) and (37) for the same lo-

cation as in Figure 6. (b) Close-up of the discretization near the inertial

singularity shows the diminished amplitude of the oscillations approaching

the inertial singularity.

Figure 9: Integration paths in complex k-space for Fourier inversion (4): (a) standard

integration path for Fourier inversion following Queney (1947); steepest de-

scent paths for (b) upstream, (c) aloft and (d) downslope regions.
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Figure 1: Comparison of displacement streamlines from: (a) Queney (1948, p22), and (b) numerical

quadrature of the Fourier integral (9). The streamlines (13) are shown as thick dark lines (for z∞ at

intervals of π/4). Also shown are the undisturbed streamlines (thin) and phaselines of zero vertical

displacement (dashed).
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Figure 2: Contours of (a) buoyancy anomaly b, (b) vertical motion w, (c) across-ridge disturbance

winds u and (d) along-ridge winds v from direct Fourier quadratures with R = 1. Positive and zero

contours are solid, negative contours are dashed. Topography corresponding to F = 3 is indicated

in shaded gray.
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Figure 3: Displacement streamlines from steepest descent approximation. The streamlines (10),

shown as thick dark lines, correspond to the same values as in Figure 1. Also shown are the

undisturbed streamlines (thin) and phaselines of zero vertical displacement (dashed). The gray

lines demarcate the upstream, aloft and downslope regimes of the steepest descent theory.
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Figure 4: Displacement streamlines from steepest descent approximation. The streamlines (10),

shown as thick dark lines, correspond to the same values as in Figure 1. Also shown are the

undisturbed streamlines (thin) and phaselines of zero vertical displacement (dashed). The gray

lines demarcate the upstream, aloft and downslope regimes of the steepest descent theory.
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Figure 5: Wave drag (units: ρ UNH2) versus Rossby number.
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Figure 6: Buoyancy anomaly as in Figure 2a, but for varying mountain widths (a) L = 50km

(R = 2) and (b) L = 200km (R = 1/2).
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Figure 7: (a) Plot of the integrands of Id(θ) (39) and Iw(θ) (33) for a location (x, z) = (−200π, 4π)

that is upstream and above the ridge. (b) Close-up of the discretization near the inertial singularity

showing loss of coherency of the oscillations in the integrand.
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Figure 8: (a) Plot of the desingularized integrands of (40) and (37) for the same location as in

Figure 6. (b) Close-up of the discretization near the inertial singularity shows the diminished

amplitude of the oscillations approaching the inertial singularity.

32



0 1 2
-1

0

1

Real(k/k
f
)

Im
ag

(k
/k

f)

Standard Integration Path

A ∞B

 a 0 1 2
-1

0

1

Real(k/k
f
)

Im
ag

(k
/k

f)

Upstream Region (x=-400km , z=3km)

A

B

S
1

∞ 1

 b

0 1 2
-1

0

1

Real(k/k
f
)

Im
ag

(k
/k

f)

Aloft Region (x=100km , z=3km)

A

B

S
1

S
2

∞ 1

 c 0 1 2
-1

0

1

Real(k/k
f
)

Im
ag

(k
/k

f)

Downslope Region (x=400km , z=3km)

A

∞ 2

B
S

1

S
2

∞ 1

 d

Figure 9: Integration paths in complex k-space for Fourier inversion (4): (a) standard integration

path for Fourier inversion following Queney (1947); steepest descent paths for (b) upstream, (c)

aloft and (d) downslope regions.
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