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Abstract. We consider the Bipartite Boolean Quadratic Programming Problem (BQP01), which gen-

eralizes the well-known Boolean quadratic programming problem (QP01). The model has applications
in graph theory, matrix factorization and bioinformatics, among others. The primary focus of this pa-

per is on studying the structure of the Bipartite Boolean Quadric Polytope (BQPm,n) resulting from a

linearization of a quadratic integer programming formulation of BQP01.
We present some basic properties and partial relaxations of BQPm,n, as well as some families of facets

and valid inequalities. We find facet-defining inequalities including a family of odd-cycle inequalities.

We discuss various approaches to obtain a valid inequality and facets from those of the related Boolean
quadric polytope. The key strategy is based on rounding coefficients, and it is applied to the families of

clique and cut inequalities in BQPm,n.

1. Introduction

In this paper, we investigate a special quadratic programming problem where feasible solutions are
extreme points of the unit cube in Rm+n. Let Q = (qi,j) be an m×n matrix where m ≤ n, c = (c1, . . . , cm)
be a row vector in Rm, d = (d1, . . . , dn) be a row vector in Rn and c0 be a constant. Then the Bipartite
Boolean Quadratic Programming Problem (BQP01) is

Maximize f(x, y) = xTQy + cx+ dy + c0

Subject to x ∈ {0, 1}m , y ∈ {0, 1}n .

A graph theoretic interpretation of BQP01 can be given as follows. Let G(I, J, E) be a complete
bipartite graph, where I = {1, . . . ,m} and J = {1, . . . , n}. Let qi,j be the weight of the edge (i, j) where
i ∈ I and j ∈ J , ci be the weight of vertex i ∈ I and dj be the weight of vertex j ∈ J . Let S(I ′, J ′, E′)
be a subgraph of G. The weight of S is the total weight of its vertices and edges. Selecting a maximum
weight complete bipartite subgraph of G is precisely the BQP01.

Throughout this paper, we denote (i, j) (or (j, i)) the edge between vertices i and j. Moreover, if (i, j)
is an edge in a bipartite graph G(I, J, E), the first entry i stands for the vertex in I and the second entry
j stands for the vertex in J .

The model BQP01 has many applications. Consider a bipartite graph G(I, J, E). A subgraph
S′(I ′, J ′, E′) of G is said to be a biclique if S′ is a complete bipartite graph. By the graph theoretic
interpretation mentioned above, Maximum Biclique Problem (MBCP) and Maximum Weighted Biclique
Problem (MWBCP) in G can be solved as BQP01. The problem MBCP and MWBCP have been stud-
ied by various authors. Applications of these models include data mining [19], clustering [6, 21] and
bioinformatics [21, 27].

Approximating matrices using low-rank {0, 1}-matrices can be modelled as a BQP01 problem. It has
applications in mining discrete patterns in binary data [28] and various clustering applications. Many
authors considered the problem of approximating a matrix by a rank-one binary matrix [10, 16, 17, 28].
Other application areas of BQP01 include finding the cut-norm of a matrix [1], correlation clustering
[5, 32], bioinformatics [5, 32] and approximating matrices using {−1, 1} entries [28].

Besides MWBCP, another problem closely related to BQP01 is Boolean Quadratic Programming Prob-
lem (QP01), a well studied combinatorial optimization problem with various applications [3]. The problem
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can be stated as

Maximize uTQ′u+ c′u+ c′0

Subject to u ∈ {0, 1}n,

where Q′ = (q′i,j) is an n × n matrix, c′ is a row vector of length n, u is a column vector of size n and
c′0 is a constant. BQP01 can be viewed as a special case of QP01 in a higher dimension and QP01 can
be formulated as a BQP01 problem as well [25]. The QP01 problem is also known as Binary Quadratic
Programming and abbreviated BQP. To avoid confusion with the bipartite BQP01 case, we exclusively use
the abbreviation QP01 for the Boolean Quadratic Programming Problem, and BQP01 for the Bipartite
Boolean Quadratic Programming Problem.

Exact algorithms for QP01 are mostly enumerative, involving branch-and-bound or branch-and-cut
methods. Many of these algorithms use bounds generated by various relaxations including several lin-
earization methods. One of the most well-studied linearization of QP01 was suggested by Padberg [23].
In this work, QP01 is formulated as an integer linear programming problem by introducing additional

constraints and variables v ∈ {0, 1}(n2−n)/2 where vi,j = uiuj as

Maximize
∑
i<j

q′i,jvi,j + c′u+ c0

Subject to ui + uj − vi,j ≤ 1,(1.1)

−ui + vi,j ≤ 0,(1.2)

−uj + vi,j ≤ 0,(1.3)

−vi,j ≤ 0,(1.4)

ui, vi,j integer, for all 1 ≤ i < j ≤ n.(1.5)

Padberg studied the convex hull QPn of all feasible solutions of (1.1) to (1.5), which is called the
Boolean Quadric Polytope. Four families of facets of the polytope QPn were studied by Padberg [23],
which include: trivial facets, clique inequalities, cut inequalities, and generalized cut inequalities. In
general, these four families of facets are not sufficient to describe all the facets of QPn. Sherali et al. [30]
applied a simultaneous lifting procedure to obtain an additional family of facet-defining inequalities for
QPn. Macambira and Souza [20] studied the edge-weighted clique problem and found that some facet-
defining inequalities for the polytope corresponding to this problem also define facets for QPn.

Similarly, we are interested in a linearization of BQP01 and its corresponding polytope. Linearization
of BQP01 can be achieved by introducing a new variable zi,j = xiyj which has zero-one value and satisfies

xi + yj−zi,j ≤ 1,(1.6)

−xi +zi,j ≤ 0,(1.7)

−yj+zi,j ≤ 0,(1.8)

−zi,j ≤ 0,(1.9)

xi, yj , zi,j integer,(1.10)

for i = 1, . . . ,m and j = 1, . . . , n.
This type of linearization has a long history, see for example [13, 12, 22, 29, 11], and continues to be

fruitful, see for example [34, 7, 33, 31, 35].

We denote the convex hull of the solutions of (1.6)–(1.10)

BQPm,n = conv
{

(x, y, z) ∈ Rm+n+mn : (x, y, z) satisfies (1.6)–(1.10)
}

the Bipartite Boolean Quadric Polytope and

BQPm,n
LP =

{
(x, y, z) ∈ Rm+n+mn : (x, y, z) satisfies (1.6)–(1.9)

}
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the linear relaxation of BQPm,n. Both are relevant in developing algorithms for various applications of
the BQP01 model. Several recent papers have explored heuristics for the bipartite Boolean quadratic
programming problem [9, 14, 15, 24, 36].

In this paper, we present some basic properties and partial relaxations of the polytope as well as some
families of facets and valid inequalities. We provide trivial inequalities and lifts of Imm22 Bell inequalities
which define facets of the polytope. Odd-cycle inequalities are a family of valid inequalities which are
facet-defining under a condition on the underlying cycle. Also, we use a coefficient rounding technique to
obtain a valid inequality from a facet-defining inequality of the polytope corresponding to QP01. Similar
techniques have recently been applied to the Bipartite Boolean Quadric Polytope with additional multiple
choice constraints [4].

The results in this paper are included in the Ph.D. thesis of the first author [26].

2. Basic Properties of BQPm,n

Padberg [23] gave many results on the Boolean quadric polytope QPn. We consider similar prop-
erties for BQPm,n. It is easy to see that the following two facts, known for QPn (see e.g. [23]), are also
true for BQPm,n and BQPm,n

LP .

Proposition 2.1. If (x, y, z) ∈ BQPm,n or (x, y, z) ∈ BQPm,n
LP , then 0 ≤ xi ≤ 1, 0 ≤ yj ≤ 1 and

0 ≤ zi,j ≤ 1 for all i = 1, . . . ,m and j = 1, . . . , n. It follows that BQPm,n ⊆ [0, 1]m+n+mn and
BQPm,n

LP ⊆ [0, 1]m+n+mn.

Since all 2m+n {0, 1}-points satisfying (1.6)–(1.10) are solutions of BQP01, this proposition implies
that these 2m+n points are vertices of BQPm,n. Since BQPm,n

LP ⊆ [0, 1]m+n+mn, these 2m+n {0, 1}-points
are also vertices of BQPm,n

LP .
We denote by ui the vector in Rm with all zero entries except the ith which is equal to 1, by vj the

vector in Rn with all zero entries except the jth which is equal to 1 and by wi,j the vector in Rmn with
all zero entries except the i, j entry which is equal to 1. Moreover, we denote 0k the zero vector of length
k.

Proposition 2.2. BQPm,n and BQPm,n
LP are full-dimensional, that is, dim(BQPm,n) = dim(BQPm,n

LP ) =
m+ n+mn.

Proof. Consider m + n + mn + 1 points in BQPm,n, namely 0m+n+mn, (ui, 0n, 0mn) for i = 1, . . . ,m,
(0m, vj , 0mn) for j = 1, . . . , n and (ui, vj , wi,j) for i = 1, . . . ,m and j = 1, . . . , n. These are m+n+mn+1
affinely independent points in BQPm,n. Therefore, the polytope has dimension m+n+mn and it is full-
dimensional. Since BQPm,n ⊆ BQPm,n

LP , it follows that BQPm,n
LP is also full-dimensional and its dimension

is m+ n+mn. �

2.1. Partial Linear Relaxation of BQPm,n. When we define the linear relaxation of BQPm,n, we
allow all entries to be non-integral. In this section, we consider the case when we keep the integral
constraints on only one of x, y or z.

Denote BQPm,n
x the convex hull of points (x, y, z) ∈ Rm+n+mn satisfying (1.6)–(1.9) and xi ∈ {0, 1} for

i = 1, . . . ,m; BQPm,n
y the convex hull of points (x, y, z) ∈ Rm+n+mn satisfying (1.6)–(1.9) and yj ∈ {0, 1}

for j = 1, . . . , n and BQPm,n
z the convex hull of points (x, y, z) ∈ Rm+n+mn satisfying (1.6)–(1.9) and

zi,j ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n.
All properties of BQPm,n shown earlier in this work are also true for BQPm,n

x , BQPm,n
y and BQPm,n

z

with the same proofs, that is, these three polytopes are bounded in [0, 1]m+n+mn and full-dimensional.
In fact, we can show that BQPm,n

x =BQPm,n
y =BQPm,n

z =BQPm,n.
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Theorem 2.3. BQPm,n
x =BQPm,n

y =BQPm,n.

Proof. By symmetry, it suffices to prove that BQPm,n
x =BQPm,n. Consider the polyhedron with the

constraints

xi + yj−zi,j ≤ 1,

−xi +zi,j ≤ 0,

−yj+zi,j ≤ 0,

xi, yj ,zi,j ≥ 0,

for i = 1, . . . ,m and j = 1, . . . , n. We can fix x and treat each xi as a constant in {0, 1}. Then we can
rewrite them as

yj−zi,j ≤ 1− xi,
zi,j ≤ xi,

−yj+zi,j ≤ 0,

yj ,zi,j ≥ 0,

for i = 1, . . . ,m and j = 1, . . . , n. It is known that Px := {(y, z) : A(y, z) ≤ b, y, z ≥ 0} is integral if b is
integral and the constraint matrix A is totally unimodular (Theorem 2 of [18]). The constraint matrix A
for our constraints is

AT =

[
In · · · In −In · · · − In 0n×mn

−Imn Imn Imn

]
,

where Ik is the identity matrix of dimension k×k and 0h×k is the zero matrix with h rows and k columns,
where h and k are positive integers. The matrix has dimension 3mn × (n + mn). We claim that this
constraint matrix is totally unimodular.

We can see that each entry of A = (ai,j) is in {−1, 0, 1}. Moreover, each row of A has at most two
nonzero entries. Let C be the set of all columns of A. Consider C as a disjoint union of C and ∅. For
each row i = 1, 2, . . . , 2mn with exactly two entries, there are one 1 and one −1. Hence,

∑
j∈C ai,j =

0 =
∑

j∈∅ aij . By Theorem 5 of [18], A is totally unimodular. Note that BQPm,n
x is the convex hull of a

finite set of polytopes obtained by fixing x to an integer vector. We have shown above that every such
polytope is integer. Thus, BQPm,n

x is integer as well. Therefore, BQPm,n
x is also integral. Since BQPm,n

x

is a relaxation of BQPm,n, we have BQPm,n ⊆ BQPm,n
x . Moreover, the fact that every vertex of BQPm,n

x

satisfies integrality constraints on y and z implies that BQPm,n
x ⊆ BQPm,n. Hence, we can conclude that

BQPm,n
x =BQPm,n. �

We can use this technique to show that BQPm,n
z =BQPm,n.

Theorem 2.4. BQPm,n
z =BQPm,n.

Proof. We consider the same polyhedron as in the previous proof. Fix z ∈ {0, 1}mn
and see each zi,j as

a constant in {0, 1}. Hence, we can restate the constraints as

xi + yj ≤ 1 + zi,j ,

−xi ≤ −zi,j ,
− yj ≤ −zi,j ,
xi, yj ≥ 0,

for i = 1, . . . ,m and j = 1, . . . , n. Similar to the proof of the previous theorem, we use the fact that
Pz := {(x, y) : A(x, y) ≤ b, x, y ≥ 0} is integral if b is integral and the constraint matrix A is totally
unimodular. Using notation ui as defined earlier in this section, the constraint matrix A is given by

AT =

[
u1 · · ·u1 · · · um · · ·um −Im · · · − Im 0m×mn

In · · · In 0n×mn −In · · · − In

]
,

which has dimension 3mn× (m+ n).
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Note that each entry of A = (ai,j) is in {−1, 0, 1}. Also, each row of A has at most two entries. Let
C be the set of all columns of A. Partition C into {1, . . . ,m} and {m+ 1, . . . ,m+ n}. For each row

i = 1, 2, . . . ,mn with exactly two entries,
∑m

i=1 ai,j = 1 =
∑m+n

i=m+1 ai,j . We can conclude that A is totally
unimodular, using Theorem 5 of [18]. Similar to the previous proof, we have BQPm,n

z =BQPm,n. �

2.2. Properties as a Restriction of the Boolean Quadric Polytope. In this section we deduce
some properties of BQP01 by viewing it as a restriction of higher dimensional instance of QP01.

Definition 2.5. [23] Let Q be an upper triangular matrix of size n×n with zero diagonal. Then we can
define G(V,E) as a graph on n vertices spanned by the edges e = (i, j) given by nonzero coefficients qi,j
of Q. Note that G has no loops because all diagonal entries of Q are zeros. Without loss of generality,
we can assume that G has no isolated vertices. We denote

QPG = conv
{

(u, v) ∈ R|V |+|E| : (u, v) satisfies (1.1), . . . , (1.5) for all (i, j) ∈ E
}

the Boolean Quadric Polytope associated with G.

From this definition, we can see QPn as QPG where G = Kn. Thus, BQPm,n can be viewed as
a Boolean quadric polytope associated with a biclique whose partite sets have order m and n, that is
BQPm,n=QPKm,n . Therefore, we can apply some properties of the Boolean quadric polytope provided
by Padberg [23] to QPG where G is bipartite.

Since QPG has only trivial facets if and only if G is acyclic [23] and Km,n is acyclic if and only if
m = 1 or n = 1, we obtain the following result for BQPm,n.

Proposition 2.6. BQPm,n =BQPm,n
LP if and only if m or n is 1. Consequently, all the facets of BQPm,n

are trivial if and only if m or n is 1.

Next, we introduce some definitions and notations, based on [23], before showing other results obtained
from Padberg’s work.

Let a = (a1, a2, a3) be a row vector of size m+ n+mn where a1 is a row vector of size m, a2 is a row
vector of size n and a3 is a row vector of size mn. For any valid inequality aω := a1x + a2y + a3z ≤ a0
of BQPm,n, we can define its support graph.

Definition 2.7. For any valid inequality aω ≤ a0 of BQPm,n, the support graph of the inequality is
denoted by G(a) = (Va, Ea) where Ea =

{
(i, j) ∈ E : a3i,j 6= 0

}
and Va is the subset of V spanned by Ea.

Note that G(a) is bipartite. For a facet-defining inequality ατ ≤ α0 of QPn, Padberg [23] gave an
interesting property on vector α and the support graph G(α). We give a BQPm,n version of this property.
The proof is very similar to that of QPn version, and hence, is omitted.

Proposition 2.8. If aω := a1x + a2y + a3z ≤ a0 defines a facet of BQPm,n, there is a pair (i, j) such
that a3i,j 6= 0.

In general, when H = (VH , EH) is a subgraph of G, we can talk about an extension of a valid inequality
αHτ ≤ αH

0 for QPH to QPG obtained from αHτ ≤ αH
0 by adding components αG

i = 0 for any i ∈ V \VH
and αG

i,j = 0 where (i, j) ∈ E\EH . The following proposition shows a relationship of facet-defining
inequalities of two Boolean quadric polytopes associated to different graphs G and H where H ⊆ G when
G and H are bipartite.

Proposition 2.9. [23] If aω ≤ a0 defines a facet for QPH , its extension defines a facet for QPG for any
bipartite G containing H as an induced subgraph.

We can easily see that if H is a biclique, this proposition applies to any bipartite G containing H.
Note that BQPm,n is QPH where H = Km,n. Let M ≥ m and N ≥ n, then BQPM,N = QPG where
G = KM,N . It follows that KM,N contains H = Km,n as an induced subgraph. Hence, the extension of
a facet-defining inequality for BQPm,n also defines a facet for BQPM,N .
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Let aω := a1x + a2y + a3z ≤ a0 be a valid inequality for BQPm,n. The canonical extension âω ≤ a0
of aω ≤ a0 to BQPM,N for M ≥ m and N ≥ n is

â1i =

{
a1i ∀i ∈ I,
0 ∀i ∈ I ′\I

, â2j =

{
a2j ∀j ∈ J,
0 ∀j ∈ J ′\J,

and â3i,j =

{
a3i,j ∀i ∈ I, j ∈ J,
0 otherwise,

where I = {1, . . . ,m} , J = {1, . . . , n} , I ′ = {1, . . . ,M} , and J ′ = {1, . . . , N}. Then we obtain the
following corollary.

Corollary 2.10. If aω := a1x+ a2y+ a3z ≤ a0 defines a facet of BQPm,n, then the canonical extension
âω ≤ a0 defines a facet of BQPM,N for M ≥ m and N ≥ n.

Now, we can give a new family of facet-defining inequalities for BQPm,n. The Imm22 Bell inequalities
are the inequalities in the form

−x1 −
m∑
j=1

(m− j)yj −
∑

2≤i,j≤m,i+j=m+2

zi,j +
∑

1≤i,j≤m,i+j≤m+1

zi,j ≤ 0,(2.1)

for m ≥ 1. Avis and Ito [2] gave a proof that this inequality is facet-defining for BQPm,m. Applying
Corollary 2.10, we get the following result.

Corollary 2.11. The canonical extension of an inequality (2.1) for BQPl,l to BQPm,n, for some l ≤ m,
defines a facet for BQPm,n.

For l = 1, the canonical extension of the I1122 Bell inequalities from BQP1,1 to BQPm,n gives the
trivial facet-defining inequality (1.7). When l = 2, the canonical extension of the I2222 Bell inequalities
are of the form −xh − yj − zi,k + zh,k + zi,j + zh,j ≤ 0, where h, i ∈ I and j, k ∈ J , or vice versa. By the
symmetry of xh and yj , each inequality is determined by the pair of vertices from different partite sets
to be xh and yj , one vertex from the same partite set as xh plays the role of xi, and one vertex from the
same partite set as yj plays the role of yk. There are mn ways to choose a pair of xh and yj , and then
(m− 1)(n− 1) to choose xi and yk. Therefore, we have mn(m− 1)(n− 1) facets obtained from I2222 Bell
inequalities.

For any integer 3 ≤ l ≤ m, each canonical extension of Ill22 Bell inequality corresponds to one labelled
K1,l(I

′, J ′) subgraph. If the vertex in I ′ is chosen from I, there are m ways to choose a vertex in I ′,
(
n
l

)
ways to choose l vertices in J to form J ′, l! ways to label these l vertices, and hence, m

(
n
l

)
l! ways in total.

Similarly, if the vertex in I ′ is chosen from J , there are n
(
m
l

)
l! ways to construct a canonical extension

of Ill22 Bell inequality. Thus, we get mn(m − 1)(n − 1) +
∑m

l=3(n
(
m
l

)
+ m

(
n
l

)
)l! non-trivial facets from

this method.

3. Families of Facet-defining Inequalities and Valid Inequalities of the Polytope

It is challenging to enumerate the facets of QPG even for very small G, see for example [8]. The
properties of QPG where G is an acyclic graph or a series-parallel graph were studied by Padberg [23].
Otherwise, finding facets of QPG when G is not a complete graph is a hard problem that is less studied
compared to QPn. In this section, we develop various families of facet-defining inequalities and valid
inequalities for QPG, emphasizing the case G = Km,n.

3.1. Trivial Facets. We show that all inequalities in the form (1.6)-(1.9) define facets of BQPm,n

and BQPm,n
LP . We call these facets trivial facets of BQPm,n. To prove that an equality defines a facet,

we show that the hyperplane corresponding to the inequality contains m+ n+mn affinely independent
points in the polytope, which implies that the facet has dimension m + n + mn − 1. Here, we use the
notation ui, vj , wi,j and 0k as introduced in the preamble to Proposition 2.2: recall that ui and vj have
unique non-zero entries corresponding to vertices i and j on their respective sides of the bipartition, while
wi,j has non-zero entries corresponding to vertices i and j as well as edge ij.

Lemma 3.1. The inequalities −zi,j ≤ 0 define facets of BQPm,n and BQPm,n
LP for i = 1, . . . ,m and

j = 1, . . . , n.
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Proof. Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Define F = {(x, y, z) ∈ BQPm,n : zi,j = 0} . We consider

• (0m, 0n, 0mn);
• (uh, 0n, 0mn) for h = 1, . . . ,m;
• (0m, vk, 0mn) for k = 1, . . . , n and
• (uh, vk, wh,k) for h = 1, . . . ,m, k = 1, . . . , n and (h, k) 6= (i, j).

These are m+ n+mn points satisfying (1.6)–(1.10) and zi,j = 0 and it is routine to check that they
are affinely independent. Therefore, −zi,j ≤ 0 defines a facet of BQPm,n. Note that these m + n + mn
points are also in BQPm,n

LP . Hence, −zi,j ≤ 0 also defines a facet of BQPm,n
LP . �

Lemma 3.2. The inequalities −xi + zi,j ≤ 0 and −yj + zi,j ≤ 0 define facets of BQPm,n and BQPm,n
LP

for i = 1, . . . ,m and j = 1, . . . , n.

Proof. We will show only the proof for −xi+zi,j ≤ 0. Similar arguments can be applied for −yj +zi,j ≤ 0.
Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Define F = {(x, y, z) ∈ BQPm,n : −xi + zi,j = 0} . We consider

• (0m, 0n, 0mn);
• (uh, 0n, 0mn) for h = 1, . . . ,m where h 6= i;
• (0m, vk, 0mn) for k = 1, . . . , n;
• (ui, vj , wi,j);

• (uh, vk, wh,k)
such that h = 1, . . . ,m, h 6= i
and k = 1, . . . , n and

• (ui, vj + vk, wi,j + wi,k)
for k = 1, . . . , n and k 6= j.

These m + n + mn points are in F and are affinely independent. Therefore, −xi + zi,j ≤ 0 defines a
facet of BQPm,n. Since these m+ n+mn points are also in BQPm,n

LP , −xi + zi,j ≤ 0 also defines a facet
of BQPm,n

LP . �

Lemma 3.3. The inequalities xi + yj − zi,j ≤ 1 define facets of BQPm,n and BQPm,n
LP for i = 1, . . . ,m

and j = 1, . . . , n.

Proof. Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Fix some i′ ∈ {1, . . . ,m} and j′ ∈ {1, . . . , n} such that
i′ 6= i and j′ 6= j. Define F = {(x, y, z) ∈ BQPm,n : xi + yj − zi,j = 1} . We consider

• (ui, 0n, 0mn);
• (0m, vj , 0mn);
• (ui, vj , wi,j);
• (ui + uh, vj + vk, wi,j +wi,k +wh,j +wh,k)

such that h = 1, . . . ,m, h 6= i
and k = 1, . . . , n, k 6= j;

• (uh, vj , wh,j) for h = 1, . . . ,m, h 6= i;
• (ui, vk, wi,k) for k = 1, . . . , n, k 6= j;

• (ui +uh, vj
′
, wi,j′ +wh,j′) for h = 1, . . . ,m,

h 6= i and
• (ui

′
, vj + vk, wi′,j + wi′,k) for k = 1, . . . , n,

k 6= j.

It is not difficult to verify that these m+ n+mn points are in F and are affinely independent. These
m + n + mn points are also in BQPm,n

LP . Therefore, xi + yj − zi,j ≤ 1 defines a facet of BQPm,n and
BQPm,n

LP . �

These lemmas give us 4mn facets in total, mn facets for each type of inequality. The results are
summarized in the next Theorem.

Theorem 3.4. (i) dim(BQPm,n) = dim(BQPm,n
LP ) = m+ n+mn

(ii) The inequalities (1.6)-(1.9) define the facets of BQPm,n
LP

(iii) The inequalities (1.6)-(1.9) define trivial facets of BQPm,n

We remark that this means the description of BQPm,n
LP via (1.6)–(1.9) is complete and irredundant.
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3.2. Odd-Cycle Inequalities. Padberg [23] introduced the family of odd-cycle inequalities for QPn.
These odd-cycle inequalities for QPn are derived from triangle inequalities, a family of valid inequalities
for QPn. Since there are no triangle inequalities for BQPm,n, we begin by verifying the validity of
odd-cycle inequalities for BQPm,n, and more generally QPG, which are not elaborated in [23].

Let G(V,E) be a graph and C(VC , EC) be any simple cycle of length at least 3 in G. For any subset
M of EC where |M | is odd, define

SM = {w ∈ VC : ∃ (u,w) 6= (v, w) ∈M} , and

S′M = {w ∈ VC : ∃ (u,w) 6= (v, w) ∈ EC\M} .

For S ⊆ V , we define τS = (uS , vS) ∈ QPG, the characteristic vector of S, by

uSi =

{
1 if i ∈ S,
0 if i ∈ V \S,

vSi,j =

{
1 if (i, j) ∈ E(S),

0 if (i, j) ∈ E\E(S),

where E(S) = {(i, j) : i, j ∈ S}. We can see that uS ∈ {0, 1}|V | and vS ∈ {0, 1}|E|. Moreover, for any
(u, v) ∈ QPG where u ∈ {0, 1}|V | and v ∈ {0, 1}|E|, (u, v) is a characteristic vector for some S ⊆ V .

Let (u, v) ∈ QPG where u ∈ {0, 1}|V | and v ∈ {0, 1}|E|. For any variable ξi whose index corresponds
to a vertex in V , denote ξ(S) =

∑
i∈S ξi. Let F ⊆ E. For any variable ζi,j whose index corresponds to

an edge in E, denote ζ(F ) =
∑

(i,j)∈F ζi,j . An odd-cycle inequality for QPG is an inequality in the form

u(SM )− u(S′M ) + v(EC\M)− v(M) ≤
⌊
|M |

2

⌋
.(3.1)

Proposition 3.5. [23] An odd-cycle inequality is a valid inequality for QPG.

For BQPm,n, we can define a characteristic vector in a similar way. Let G(V,E) be the underlying
graph of the polytope. Then G is a complete bipartite graph whose partite sets I and J contain m and
n vertices, respectively. Let S ⊆ V . We define ωS = (xS , yS , zS) ∈ BQPm,n, the characteristic vector of
S, by

xSi =

{
1 if i ∈ S ∩ I,
0 if i ∈ I\S,

ySj =

{
1 if j ∈ S ∩ J,
0 if j ∈ J\S,

zSi,j =

{
1 if (i, j) ∈ (S ∩ I : S ∩ J),

0 if (i, j) ∈ E\(S ∩ I : S ∩ J),

where (S1 : S2) = {(i, j) : i ∈ S1, j ∈ S2} for any disjoint subsets S1 and S2 of V . We can see that any
vector (x, y, z) satisfying (1.6), . . . , (1.10) is a characteristic vector for some subset S of V . We can write
an odd-cycle inequality for BQPm,n as

x(SM )− x(S′M ) + y(SM )− y(S′M ) + z(EC\M)− z(M) ≤
⌊
|M |

2

⌋
.(3.2)

Note that when G is bipartite, C is an even cycle. Thus, we have |C| ≥ 4. Since BQPm,n =QPKm,n , we
get the following corollary.

Corollary 3.6. An odd-cycle inequality is a valid inequality for BQPm,n.

Since each odd-cycle inequality is determined by the choice of cycle C and the set M , there are
m∑
i=2

(
m

i

)(
n

i

)
(

i∑
j=1

(
2i

2j − 1

)
) odd-cycle inequalities for BQPm,n.

The following proposition is Theorem 9 of [23].

Proposition 3.7. [23] An odd-cycle inequality (3.2) defines a facet of QPG if and only if C(VC , EC) is
a chordless cycle of G. When C is a chordless cycle of Km,n, we also have

BQPC = BQPC
LP ∩

{
ω ∈ R2|C| : ω satisfies all inequalities (3.2)

}
.

Note that in a complete bipartite graph, |C| = 4 if and only if C is chordless. Thus, we obtain the
following corollary.
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Corollary 3.8. The inequality (3.2) defines a facet for BQPm,n if and only if |C| = 4.

Corollary 3.9. BQPm,n has 2mn(m−1)(n−1) nontrivial facets obtained from (3.2) where C = C4 and
M has 1 or 3 elements.

Proof. BQPm,n is a Boolean quadric polytope associated with the bipartite graph Km,n. For each cycle,
there are four choices of M of order 1 and four choices of M of order 3 giving different 8 facets. Since

there are

(
m

2

)(
n

2

)
=
m(m− 1)n(n− 1)

4
C4’s in Km,n, BQPm,n has 2mn(m−1)(n−1) nontrivial facets

defined by odd-cycle inequalities. �

Proposition 3.10. BQP2,2 has exactly 8 nontrivial facets. Every nontrivial facet is obtained from (3.2)
where C = C4 and M has 1 or 3 elements. More precisely, we have

BQP2,2 = BQP2,2
LP ∩

{
ω ∈ R8 : ω satisfies all inequalities (3.2)

}
.

Therefore, BQP2,2 has exactly 24 facets.

Proof. From Proposition 3.9, there are 8 nontrivial facets defined by odd-cycle inequalities. Choose C =
K2,2. From Proposition 3.7, BQP2,2 = BQPC = BQP2,2

LP ∩
{
ω ∈ R8 : ω satisfies all inequalities (3.2)

}
. It

implies that all nontrivial facets of BQP2,2 are these 8 odd-cycle inequalities. There are 4mn = 16 trivial
inequalities. Hence, there are exactly 24 facets in total. �

Among all 8 odd-cycle inequalities, 4 of them with |M | = 1 are also canonical extension of 4 I2222
Bell inequalities for BQP2,2 to BQPm,n. Since all coefficients of yj ’s in an odd-cycle inequality are either
0 or -1, only canonical extensions of Bell inequalities I2222 can be odd-cycle inequalities. Therefore, for
BQPm,n, the mn(m− 1)(n− 1) canonical extensions of I2222 Bell inequalities are the only facet-defining
inequalities that are both canonical extensions of Bell inequalities and odd-cycle inequalities.

3.3. Families of Valid Inequalities Obtained from Rounding Coefficients. Since the Boolean
quadric polytope is well-studied, we investigate where inequalities for it, or the techniques used to generate
them, carry over to give valid inequalities and facets for BQPm,n. In particular, we look at techniques
based on rounding the coefficients of some families of facets for QPm+n.

We can see that BQPm,n is a related to QPm+n in the sense that the feasible points for QPm+n ⊂
Rm+n+(m+n

2 ) restrict to feasible points of BQPm,n ⊂ Rm+n+mn using the natural inclusion. However
BQPm,n does not directly inherit valid inequalities or facets from QPm+n.

Consider a valid inequality ατ = α1u+ α2v ≤ α0 for QPm+n. Firstly, let us form a related inequality
for BQPm,n by simply attaching the coefficients of u1, . . . , um, um+1, . . . , um+n to x1, . . . , xm, y1,
. . . , yn and those of vi,j to zi,j where applicable. Since many edges (i, j) in Km+n do not appear in
Km,n, we do not include terms corresponding to these disappearing edges in the corresponding inequality
formulated for BQPm,n. Instead of throwing all of these terms away, we replace the variables with positive
coefficients by zero and replace the variables with negative coefficient by one. We show that this strategy
gives us valid inequalities, but they are not necessarily facet-defining.

Definition 3.11. Denote V = {1, . . . ,m,m+ 1, . . . ,m+ n}, G(V,E) = Km,n and G′(V,E′) = Km+n.
Let (u, v) be a vertex of QPm+n, a polytope corresponding to G′, where u ∈ {0, 1}m+n and v ∈

{0, 1}(m+n)(m+n−1)/2. Then the bipartite restriction of (u, v) is (x̃, ỹ, z̃) where x̃ is obtained from the first
m entries of u, ỹ is obtained from the last n entries of u and z̃ is obtained from v by discarding entries
corresponding to (i, j) ∈ E′\E.

Let ατ = α1u + α2v ≤ α0 be a valid inequality for QPm+n. Denote E− = {(i, j) ∈ E′\E : α2
ij < 0}.

The rounded inequality of ατ ≤ α0 is

ãω̃ = ã1x̃+ ã2ỹ + ã3z̃ ≤ α0 −
∑

ij∈E−
α2
ij ,(3.3)

where ã1 is obtained from the first m entries of α1, ã2 is obtained from the last n entries of α1 and ã3 is
obtained from α2 by discarding entries (i, j) ∈ E′\E.
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The following proposition is easy to verify.

Proposition 3.12. The inequality (3.3) is valid for BQPm,n.

Clique inequalities and cut inequalities are the main families of non-trivial facet-defining inequalities
for the Boolean quadric polytope found by Padberg [23]. We remark that while an arbitrary non-trivial
clique or cut in Kn yields a facet-defining inequality for QPm+n, inequalities obtained by discarding the
terms corresponding to the missing edges in complete bipartite graph are not even valid. Moreover, we
do not get any facet-defining inequalities for BQPm,n from rounding applied to these inequalities. Also,
we give an alternative modification on a family of rounded inequalities, but they are not facet-defining.
Some of these inequalities are tight, but some of them are not tight anywhere.

We introduce some notation for describing inequalities for QPm+n and BQPm,n. Let G(V,E) be an
underlying graph of the polytope we consider, i.e.Km+n orKm,n respectively. Let S and T be disjoint sub-
sets of V . For any variable ζi,j whose index corresponds to an edge in E, denote ζ(S : T ) =

∑
i∈S,j∈T ζi,j .

In case that S = {s}, we can use ζ(s : T ) instead of ζ({s} : T ) for convenience. The same applies for the
case when T is a singleton. Together with notations given in Section 3.2, we define various families of
valid inequalities.

3.3.1. Rounded Clique Inequalities. Here we obtain a family of valid inequalities for BQPm,n from round-
ing the family of clique inequalities for QPm+n. Let G′(V,E′) = Km+n. Let S ⊆ V with |S| ≥ 3 and α
be an integer in {1, . . . , |S| − 2}. The original clique inequality for QPm+n given by Padberg [23] is in
the form

Cq(τ) := αu(S)− v(E(S)) ≤ α(α+ 1)

2
.

This inequality defines a facet of QPm+n.
We consider G(V,E) = Km,n. Let S1 = S ∩ I and S2 = S ∩ J . Let S ⊆ V where |S| ≥ 3 and α be an

integer such that 1 ≤ α ≤ |S| − 2. The rounded clique inequality is

RCq(ω) := αx(S1) + αy(S2)− z(S1 : S2) ≤ β,(3.4)

where β = α(α + 1)/2 + |S1|(|S1| − 1)/2 + |S2|(|S2| − 1)/2. These

m+n∑
s=3

(s − 2)

(
m+ n

s

)
inequalities are

valid for BQPm,n, but they are not facet-defining.

Theorem 3.13. The inequality (3.4) does not define a facet for BQPm,n and is valid for BQPm,n
LP .

Moreover, (3.4) is tight only when S1 or S2 is a singleton and α = |S| − 2.

Proof. Let s := |S|, h := |S1| and k := |S2|. Thus, s = h + k, and we assume without loss of generality
that h ≤ k. The proof is split into three cases depending on the values of h and k.

Case 1: h = 0 and k = s. Here S1 = ∅ and the terms z(S1 : S2) disappear. By Proposition 2.8, (3.4)
is not facet defining. Then the inequality reduces to

(c1) (k − 2)y(S2) ≤ (k − 1)2.

Consider the sum of inequalities (k− 2)yj ≤ k− 2 over all j ∈ S2. We obtain (k− 2)y(S2) ≤ (k− 2)k.
Since (k − 1)2 − (k − 2)k > 0, (c1) is also valid for BQPm,n

LP .
Let R ⊆ V be the set of vertices corresponding to a feasible solution y ∈ BQPm,n. The left-hand side

reaches its maximum value (k− 2)k when R∩S = S2. Since (k− 1)2− (k− 2)k > 0, there are no vertices
ωR of BQPm,n where RCq(ωR) = β, which means (3.4) is not tight when S1 or S2 is empty.

Case 2: h = 1 and k = s− 1. Here S1 is a singleton, say S1 = {u}. We construct a non-trivial linear
combination of the constraints of BQPm,n whose left-hand side matches that of (3.4). Consider the sum of
inequalities xu+yj−zu,j ≤ 1 over all j ∈ S2, (α−k)xu ≤ 0 and (α−1)yj ≤ α−1 for all j ∈ S2. Then we get

(c2) αx(S1) + αy(S2)− z(S1 : S2) ≤ k + k(α− 1) = αk.
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By construction, (c2) is valid for BQPm,n and BQPm,n
LP . Moreover, the expression β − αk is nonnegative

since 2(β −αk) = (α− k+ 1)(α− k) ≥ 0, which means its right-hand side is no larger than that of (3.4).
It follows that (3.4) is valid for BQPm,n

LP and redundant for BQPm,n. Therefore, it is not facet-defining
for BQPm,n. Furthermore, when R∩S = S2 and α = k− 1 = s− 2, (c2) holds with equality and β = αk.
Therefore, (3.4) is tight in this case.

Case 3: h, k ≥ 2. Here we consider three different subcases. For the first two subcases, we follow
the same approach as in Case 2. We construct a valid inequality for BQPm,n, whose left-hand side is
the same as that of (3.4), from a linear combination of the constraints of BQPm,n. We later show that
the right-hand side of the constructed inequality is at most that of (3.4). It leads to the fact that (3.4)
is redundant for BQPm,n, and hence, does not define a facet. Furthermore, it also implies that (3.4) is
valid for BQPm,n

LP .
Case 3.1: h ≤ k < α. We sum over all hk inequalities in the form xi + yj − zi,j ≤ 1 where

(i, j) ∈ (S1 : S2). Since each xi appears k times and each yj appears h times in this sum, we add the
inequalities (α− k)xi ≤ α− k for all i ∈ S1 and (α− h)yj ≤ α− h for all j ∈ S2. Then we get

αx(S1) + αy(S2)− z(S1 : S2) ≤ hk + h(α− k) + k(α− h) = αh+ αk − hk.
Its right-hand side αh+ αk − hk is at most that of (3.4) since

(g1) 2(β − αh− αk + hk) = (α− h− k + 1)(α− h− k) ≥ 0.

Therefore, (3.4) is valid for BQPm,n
LP , but it is not a facet-defining inequality for BQPm,n. However, we

can see from (g1) that β = αh + αk − hk if and only if α = h + k = s or α = h + k − 1 = s − 1. Since
α ≤ s− 2, there is no ωR where RCq(ωR) = β in Case 1.

Case 3.2: h < α ≤ k. We again consider the sum of xi + yj − zi,j ≤ 1 where (i, j) ∈ (S1 : S2) and
add the inequalities (α− k)xi ≤ 0 for all i ∈ S1 and (α− h)yj ≤ α− h for all j ∈ S2 to obtain

αx(S1) + αy(S2)− z(S1 : S2) ≤ hk + k(α− h) = kα,

which is a valid inequality for BQPm,n whose right-hand side αk does not exceed that of (3.4) since

(g2) 2(β − αk) = (α− k)(α− k − 1) + h(h− 1) ≥ 0.

Then inequality (3.4) does not define a facet for BQPm,n, but it is still valid for BQPm,n
LP . From (g2), we

can see that if β = αk, then h(h− 1) must be zero. Since h ≥ 2, (3.4) is also not tight in this case.
Case 3.3: α ≤ h ≤ k. Let

U :=

{
−1+
√

1+4(s−(h−k)2)
2 ; if s− (h− k)2 ≥ 0

0 ; otherwise
and L :=

2s− 1−
√

8h(k − 1) + 1

2
.

For this case, we show the three following claims.
Claim 1 For a given s = h+ k > 0, there exists no α ∈ Z such that L < α < U .
Claim 2 (3.4) is not facet-defining if α ≥ U .
Claim 3 (3.4) is not facet-defining if α ≤ L.

Claim 1 implies that for a given s, α ≤ L or α ≥ U . Then from Claim 2 and Claim 3, (3.4) with
this α does not define a facet, allowing us to conclude Theorem 3.13. It remains to prove these claims.

Proof of Claim 1. Since we assume that h, k ≥ 2, S has size at least four. It is trivial to verify
that Claim 1 holds for 4 ≤ s ≤ 6. Thus, we can assume that s ≥ 7. We first consider the polynomial
p(s) := s4 − 8s3 + 10s2 − 8s+ 1 which is increasing and non-negative for s ≥ 7. Then we obtain

0 ≤ s4 − 8s3 + 10s2 − 8s+ 1 = (s2 + 4s− 1)2 − 4s2(4s+ 1)

2s
√

4s+ 1 ≤ s2 + 4s− 1

2s2 − 4s+ 3 ≤ 4s2 − 4s
√

4s+ 1 + 4s+ 1 = (2s−
√

4s+ 1)2

√
4s+ 1 ≤ 2s−

√
2s2 − 4s+ 3 ≤ 2s−

√
8h(k − 1) + 1.



12 PIYASHAT SRIPRATAK, ABRAHAM P. PUNNEN, AND TAMON STEPHEN

It follows that

U ≤
√

4s+ 1− 1

2
≤

2s− 1−
√

8h(k − 1) + 1

2
= L.

Thus, we get the claim.
To show Claim 2 and Claim 3, we construct valid inequalities whose left-hand side of these inequali-

ties and that of (3.4) are the same, but the right-hand side of the constructed inequalities are not greater
than that of (3.4). As for Claim 2, we use the sum of xi + yj − zi,j ≤ 1 where (i, j) ∈ (S1 : S2),
(α− k)xi ≤ 0 for all i ∈ S1 and (α− h)yj ≤ 0 for all j ∈ S2. This yields

(c3) αx(S1) + αy(S2)− z(S1 : S2) ≤ hk.

Since α ≥ U , 2(β − hk) = α2 +α+ (h− k)2− s ≥ 0. Thus, (3.4) does not define a facet for BQPm,n, but
it is a valid inequality for BQPm,n

LP .
We consider a different sum of valid inequalities to prove Claim 3. Let S1 = {1, . . . , h} and

S2 = {1, . . . , k}. Take the sum of xi + yi − zi,i ≤ 1 for i = 1, . . . , h, (α− 1)xi ≤ α− 1 for all i = 1, . . . , h,
(α− 1)yj ≤ α− 1 for all j = 1, . . . , h, αyj ≤ α for j = h+ 1, . . . , k, and −zi,j ≤ 0 for all i = 1, . . . , h and
j = 1, . . . , k where i 6= j. The sum of these inequalities becomes

(c4) αx(S1) + αy(S2)− z(S1 : S2) ≤ h+ h(α− 1) + h(α− 1) + α(k − h) = αs− h.

Since α ≤ L, we have 2(β − αs+ h) = α2 + (1− 2s)α+ k(k − 1) + (h+ 1)h ≥ 0. It leads to the fact that
(3.4) does not facet-defining for BQPm,n, while it is valid for BQPm,n

LP . Thus, we get the claim.
Suppose that (3.4) is tight, which means (c3) and (c4) are also tight. Claim 1 states that α ≥ U or

α ≤ L, so we can consider it in two cases.
Case 3.3.1: α ≥ U . If (c3) is tight, there exists ωR satisfying (c3) with equality and there exist S1

and S2 such that β = hk. It follows that xRi + yRj − zRi,j = 1 for all (i, j) ∈ (S1 : S2), (α − k)xRi = 0 for

all i ∈ S1 and (α− h)yRj = 0 for all j ∈ S2.

When α 6= h and α 6= k, we have xRi = 0 for all i ∈ S1 and yRj = 0 for all j ∈ S2. It follows that

zRi,j = xRi y
R
j = 0 for all (i, j) ∈ (S1 : S2). Hence, xRi + yRj − zRi,j = 0 < 1 for all (i, j) ∈ (S1 : S2), a

contradiction.
If α = h or α = k, since α ≤ h ≤ k, in both cases, we obtain α = h. Since α2 + α + (h − k)2 − s =

2(β − hk) = 0 and α ≥ U , we get α = U . From h = α = U , we get that h = (2k +
√

8k − 4k2)/4. Since
h is a real number, we have 0 ≤ k ≤ 2. Since we assume that k ≥ 2, it implies that k = 2 and it yields
h = 1 which contradicts the assumption that h ≥ 2.

Case 3.3.2: α ≤ L. When (c4) is tight, there exists ωR satisfying (c4) with equality and there exist
S1 and S2 such that β = αs − h. Thus, xRi + yRi − zRi,i = 1 for i = 1, . . . , h, (α − 1)xRi = α − 1 for all

i = 1, . . . , h, (α − 1)yRj = α − 1 for all j = 1, . . . , h, αyRj = α for j = h + 1, . . . , k, and −zRi,j = 0 for all
i = 1, . . . , h and j = 1, . . . , k where i 6= j.

If α 6= 1, we have xRi = 1 for all i = 1, . . . , h and yRj = 1 for all j = 1, . . . , k. Since h, k ≥ 2, there
exists zi,j where (i, j) ∈ (S1 : S2) and i 6= j such that −zi,j = −xiyj = −1 < 0, a contradiction.

When α = 1, note that α2 +(1−2s)α+k(k−1)+(h+1)h = 2(β−αs+h) = 0 and α ≤ L implies that
α = L. From L = α = 1, we get that h(h− 1) + (k− 1)(k− 2) = 0. Since h, k ≥ 2, we have h(h− 1) > 0
and (k − 1)(k − 2) ≥ 0, a contradiction.

Therefore, we conclude that there are no ωR such that RCq(ωR) holds with equality for Case 3.3 as
well. �

3.3.2. Rounded Cut Inequalities. Different from the clique inequalities, the cut inequalities involve two
disjoint sets of vertices. Let G′(V,E′) = Km+n, and let S and T be disjoint subsets of V with |S| ≥ 1
and |T | ≥ 2. The cut inequality for QPm+n given by Padberg [23] is

Cut(τ) := −u(S)− v(E(S)) + v(S : T )− v(E(T )) ≤ 0,
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defining a facet for QPm+n. If we consider instead the bipartite graph G(V,E) = Km,n and obtain a new
valid inequality for BQPm,n by dropping the terms corresponding to edges in E′\E, the inequality will
no longer be valid.

Let S and T be disjoint subsets of V with |S| ≥ 1 and |T | ≥ 2. Denote S1 = S ∩ I, S2 = S ∩ J ,
T1 = T ∩ I and T2 = T ∩ J . The rounded version of the cut inequality is

RCut(ω) :=− x(S1)− y(S2)− z(S1 : S2) + z(S1 : T2) + z(T1 : S2)− z(T1 : T2) ≤ β,(3.5)

where β =

(
|S1|

2

)
+

(
|S2|

2

)
+

(
|T1|
2

)
+

(
|T2|
2

)
. This rounded inequality is valid for BQPm,n. There are

m+n−2∑
s=1

m+n−s∑
t=2

(
m+ n

s

)(
m+ n− s

t

)
inequalities in this form.

We can strengthen this inequality by changing the constant on the right hand side. The strengthened
version is

SRCut(ω) := −x(S1)− y(S2)− z(S1 : S2) + z(S1 : T2) + z(T1 : S2)− z(T1 : T2) ≤ γ,(3.6)

where γ = |S1|(|T2| − 1) + |S2|(|T1| − 1). This inequality is valid for BQPm,n but it does not define a

facet. Note that for a, b ∈ Z+. a(b− 1) ≤
(
a

2

)
+

(
b

2

)
. Hence, inequality (3.6) is stronger than (3.5).

Theorem 3.14. The inequality (3.6) is valid for BQPm,n but is not facet-defining. Moreover, there are
no vertices ω ∈ BQPm,n where SRCut(ω) = γ.

Proof. Let u ∈ T1 and v ∈ T2. Consider the left hand side of (3.5) which is

−x(S1)− y(S2)− z(S1 : S2) + z(S1 : T2) + z(T1 : S2)− z(T1 : T2)

=− x(S1)− z(S1 : S2) + z(S1 : v) + z(S1 : T2\{v})− y(S2)− z(T1 : T2) + z(u : S2) + z(T1\{u} : S2).

Adding

−xi + zi,v ≤ 0, i ∈ S1,

−yj + zu,j ≤ 0, j ∈ S2,

zi,j ≤ 1, i ∈ S1, j ∈ T2\{v} or i ∈ T1\{u}, j ∈ S2,

−zi,j ≤ 0 i ∈ S1, j ∈ S2 or i ∈ T1, j ∈ T2
together, we obtain

−x(S1)− z(S1 : S2) + z(S1 : v) + z(S1 : T2\{v})
−y(S2)− z(T1 : T2) + z(u : S2) + z(T1\{u} : S2) ≤ |S1|(|T2| − 1) + |S2|(|T1| − 1).

Therefore, (3.6) is valid for BQPm,n and BQPm,n
LP but does not define a facet.

Let ω = (x, y, z) be a vertex in BQPm,n. Consider an edge (p, q) where p ∈ S1 and q ∈ S2. If zp,q = 1,
then −zp,q = −1 < 0. Thus, SRCut(ω) < γ. If zp,q = 0, then xp or yq must be zero. Without loss of
generality, we assume that xp = 0. Then zp,j = 0 < 1 for all j ∈ T2\{v}. So we obtain SRCut(ω) < γ as
well. �

4. Conclusion

In this study, we investigated the bipartite Boolean quadratic programming problem from a poly-
hedral point of view. We investigated the polytope BQPm,n arising from a linearization of an integer
programming formulation of BQP01. When the integrality constraints are relaxed for some variables, we
can show that the polytopes BQPm,n

x , BQPm,n
y and BQPm,n

z obtained from these partial relaxations are
the same as BQPm,n.

Various strategies to establish new classes of valid inequalities and facet-defining inequalities are pre-
sented. In particular, we obtain families of trivial facets and odd-cycle inequalities directly from the
corresponding families for QPm+n. Rounding techniques are applied to families of clique inequalities
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and cut inequalities for QPm+n. In summary, here are the list of valid inequalities and facet-defining
inequalities established in our work.

• Trivial facets (1.6)-(1.9): 4mn facet-defining inequalities for both BQPm,n and BQPm,n
LP .

• Canonical extensions of Bell inequalities (2.1): mn(m− 1)(n− 1) +
∑m

l=3(n
(
m
l

)
+m

(
n
l

)
)l!

non-trivial facet-defining inequalities, mn(m− 1)(n− 1) of which are also odd-cycle inequalities.

• Odd-cycle inequalities (3.2):

m∑
i=2

(
m

i

)(
n

i

)
(

i∑
j=1

(
2i

2j − 1

)
) valid inequalities, of which 2mn(m−

1)(n− 1) are facet-defining and mn(m− 1)(n− 1) of them are also canonical extensions of I2222
Bell inequalities.

• Rounded clique inequalities (3.4):

m+n∑
s=3

(s− 2)

(
m+ n

s

)
valid inequalities for both BQPm,n

and BQPm,n
LP , none of which are facet-defining.

• Rounded cut inequalities (3.5):

m+n−2∑
s=1

m+n−s∑
t=2

(
m+ n

s

)(
m+ n− s

t

)
valid inequalities for

both BQPm,n and BQPm,n
LP , none of which are facet-defining.

• Strengthened rounded cut inequalities (3.6):

m+n−2∑
s=1

m+n−s∑
t=2

(
m+ n

s

)(
m+ n− s

t

)
valid

inequalities for both BQPm,n and BQPm,n
LP , none of which are facet-defining.

We conclude that the extension of Bell inequalities and some odd cycle inequalities define facets and are
potentially useful for branch-and-cut algorithms. On the other hand, analogues of the rounded cut and
clique inequalities, which are important sources of cuts for QPn, turn out to be valid for BQPm,n

LP , and,
thus, are not helpful here.
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