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A MAJORIZATION BOUND FOR THE EIGENVALUES OF SOME
GRAPH LAPLACIANS∗
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Abstract. Grone and Merris conjectured that the Laplacian spectrum of a graph is majorized
by its conjugate vertex degree sequence. In this paper, we prove that this conjecture holds for a class
of graphs, including trees. We also show that this conjecture and its generalization to graphs with
Dirichlet boundary conditions are equivalent.
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1. Introduction. One way to extract information about the structure of a graph
is to encode the graph in a matrix and study the invariants of that matrix, such as
the spectrum. In this paper, we study the spectrum of the combinatorial Laplacian
matrix of a graph.

The combinatorial Laplacian of a simple graph G = (V,E) on the set of n vertices
V = {v1, . . . , vn} is the n× n matrix L(G) defined by

L(G)ij =

⎧⎪⎨
⎪⎩

deg(vi) if i = j,

−1 if {i, j} ∈ E,

0 otherwise.

Here deg(v) is the degree of v, that is, the number of edges on v. The matrix
L(G) is positive semidefinite, and so its eigenvalues are real and nonnegative. We list
them in nonincreasing order and with multiplicity:

λ1(L(G)) ≥ λ2(L(G)) ≥ · · · ≥ λn−1(L(G)) ≥ λn(L(G)) = 0.

When the context is clear, we can write λi(G), or simply λi. We abbreviate the
sequence of n eigenvalues as λ(L(G)).

We are interested in the Grone–Merris (GM) conjecture that the spectrum λ(L(G))
is majorized by the conjugate partition of the nonincreasing sequence of vertex de-
grees of G [5]. This question is currently being studied, see, for example, [4], but has
yet to be resolved. We extend the class of graphs for which the conjecture is known to
hold to include trees, among other graphs. We also show that if GM holds for graph
Laplacians, it also holds for more general Dirichlet Laplacians (cf. [2]) as conjectured
by Duval [3].
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2. Background and definitions.

2.1. Graphs. Given a graph G = (V,E) with n = |V | vertices and m = |E|
edges, there are several ways to represent G as a matrix. There is the edge-incidence
matrix, an n ×m matrix that records in each column the two vertices incident on a
given edge. For directed graphs, we can consider a signed edge-incidence matrix:

∂(G)ve =

⎧⎪⎨
⎪⎩

1 if v is the head of edge e,

−1 if v is the tail of edge e,

0 otherwise.

There is also an n× n matrix A(G) called the adjacency matrix, which is defined
by

A(G)ij =

{
1 if {i, j} ∈ E,

0 otherwise.

The diagonal of A(G) is zero.
We can encode the (vertex) degree sequence of G in nonincreasing order as a

vector d(G) of length n and in an n × n matrix D(G) whose diagonal is d(G) and
whose off-diagonal elements are 0. Then the combinatorial Laplacian L(G) that we
study is simply D(G)−A(G). It is easy to check that if we (arbitrarily) orient G and
consider the matrix ∂(G) above, we also have L(G) = ∂(G)∂(G)t.

The complement of a graph G = (V,E) is the graph G on V whose edges are
exactly those not included in G.

Remark 2.1. The Laplacian is sometimes defined with entries normalized by
dividing by the square roots of the degrees. However, we do not do that here.

2.2. Majorization. We recall that a partition p = p(i) is a nonincreasing se-
quence of natural numbers, and its conjugate is the sequence pT (j) := |{i : p(i) ≤ j}|.
Then pT has exactly p(1) nonzero elements. When convenient, we can add or drop
trailing zeros in a partition. For nonincreasing real sequences s and t of length n, we
say that s is majorized by t (denoted s � t) if, for all k ≤ n,

k∑
i=1

si ≤
k∑

i=1

ti(2.1)

and

n∑
i=1

si =

n∑
i=1

ti.(2.2)

The concept of majorization extends to vectors by comparing the nonincreas-
ing vectors produced by sorting the elements of the vector into nonincreasing order.
Given a vector v, call the sorted vector v′ which contains the elements of v sorted in
nonincreasing order (with multiplicity) sort(v).

In the context of majorization of unsorted vectors, we will often want to refer to
the concatenation of two vectors x and y (i.e., the vector which contains the elements
of x followed the elements of y). This is denoted x, y, as, for example, in Lemma 2.3.
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There is a rich theory of majorization inequalities which occur throughout math-
ematics; see, for example, [9]. Matrices are an important source of such inequalities.
Notably, the relationship between the diagonal and spectrum of a Hermitian matrix
is characterized by majorization; see, for example, [7].

We will use the following lemmas about majorization, which can be found in [9].
Lemma 2.2. If x and y are vectors and P is a doubly stochastic matrix and

x = Py, then x � y.
This yields two simple corollaries.
Lemma 2.3. For any vectors x � y and any vector z, we have x, z � y, z.
Lemma 2.4. If x and y are nonincreasing sequences, and x = y except that at

indices i < j we have xi = yi − a and xj = yj + a, where a ≥ 0, then x � y.
Lemma 2.4 says that for nonincreasing sequences, transferring units from lower

to higher indices reduces the vector in the majorization partial order. In particular,
if x, x′, y, y′ are all nonincreasing sequences, x′ � x and y′ � y, then

x′ + y′ � x′ + y � x + y.(2.3)

Lemma 2.5. Let A and B be positive semidefinite (more generally, Hermitian)
matrices. Then

λ(A), λ(B) � λ(A + B).

This is Theorem G.1.b in Chapter 9 of [9], although the majorization is reversed
in the printing available to the author.

Lemma 2.6. For positive semidefinite (more generally, Hermitian) matrices A
and B,

λ(A + B) � λ(A) + λ(B).

This is a theorem of Fan (Theorem G.1 in Chapter 9 of [9]).
Lemma 2.7. Let A be an m × n 0 − 1 (or incidence) matrix with row sums

r1, . . . , rm and columns sums c1, . . . , cn both indexed in nonincreasing order. Let rT

be the conjugate of the partition (r1, . . . , rm) and c be the partition (c1, . . . , cn). Then

c � rT .(2.4)

This is known as the Gale–Ryser theorem (Theorem C.1 in Chapter 9 of [9]).

2.3. The GM conjecture. In the notation of this section, the GM conjecture
is

λ(G) � dT (G).(2.5)

Note that
n∑

i=1

dTi =

n∑
i=1

di = trace(L(G)) =

n∑
i=1

λi.

If we ignore isolated vertices (which contribute only zero entries to λ and d), we
will have dT1 = n. Using this fact, it is possible to show that

λ1 ≤ dT1 .(2.6)
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Three short proofs of this are given in [4]. The authors then continue to prove the
second majorization inequality:

λ1 + λ2 ≤ dT1 + dT2 .(2.7)

However, their proof would be difficult to extend.
There are several other facts which fit well with the GM conjecture. One is that

if the GM conjecture holds, then the instances where (2.5) holds with equality are
well understood; these would be the threshold graphs of section 3.1. Also, since d and
λ are, respectively, the diagonal and spectrum of L(G), we have d � λ. Combining
this with GM gives d� dT , a fact that has been proved combinatorially. We refer the
reader to [4] for further discussion.

3. GM on classes of graphs. In this section, we give further evidence for the
GM conjecture by remarking that it holds for several classes of graphs, including
threshold graphs, regular graphs, and trees.

3.1. Threshold graphs. The GM conjecture was originally formulated in the
context of threshold graphs, which are a class of graphs with several extremal proper-
ties. An introduction to threshold graphs is [8]. Threshold graphs are the graphs that
can be constructed recursively by adding isolated vertices and taking graph comple-
ments. It turns out that they are also characterized by degree sequences: the convex
hull of possible (unordered) degree sequences of an n vertex graph defines a polytope.
The extreme points of this polytope are the degree sequences that have a unique
labelled realization, and these are exactly the threshold graphs.

Threshold graphs are interesting from the point of view of spectra. Both Hammer
and Kelmans [6] and Grone and Merris [5] investigated the question of which graphs
have integer spectra. They found that threshold graphs are one class of graphs that
have integer spectra and showed for these graphs that λ(G) = dT (G). We could
interpret the GM conjecture as saying that threshold graphs are extreme in terms
of spectra and that these extreme spectra can be understood as conjugate degree
sequences.

3.2. Complements. Threshold graphs are built using graph complements of
existing graphs, and so it is not surprising that the GM conjecture behaves well under
taking complements. Indeed, the relationship between λ(G) and λ(G) is the same
as between dTn (G) and dTn (G). For a graph G with n vertices, the ith largest vertex
of G is the (n − i)th largest vertex of G, and we have di(G) = n − 1 − dn−i(G).
Translating this to the conjugate partition dT yields dTi (G) = n − dTn−1−i(G) with

dTn (G) = dTn (G) = 0.
Now notice that L(G) + L(G) = nIn − Jn, where Jn is the n× n matrix of ones.

The matrix nIn − Jn sends the special eigenvector en (n ones) to 0 and acts as the
scalar n on e⊥n . Both L(G) and L(G) also send en to 0, giving us λn(G) = λn(G) = 0.
Since L(G) and L(G) sum to nIn on e⊥n , they have the same set of eigenvectors on
e⊥n , and for each eigenvector, the corresponding eigenvalues for L(G) and L(G) sum
to n. Thus λi(G) = n− λn−1−i(G). As a consequence, GM holds for G if and only if
GM holds for G.

3.3. Regular and nearly regular graphs. For some small classes of graphs,
it can be easily shown that the GM conjecture holds. Consider a k-regular graph
G on n vertices (in a k-regular graph, all vertices have degree k). Then the degree
sequence d(G) is k repeated n times, and its conjugate dT (G) is n repeated k times
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followed by n − k zeros. Thus dT majorizes every nonnegative sequence of sum kn
whose largest term is at most n, and, in particular, λ � dT . Indeed, this proof shows
that GM holds for what we might call nearly regular graphs, that is, graphs whose
vertices have degree either k or (k − 1).

3.4. Graphs with low maximum degree. Using facts about the initial GM
inequalities, we can prove that GM must hold for graphs with low maximal degree.
For example, if a graph has maximum vertex degree 2, then dT3 = dT4 = · · · = dTn = 0,
and so, for k = 2, 3, . . . , n,

k∑
i=1

λi ≤
n∑

i=1

λi =

n∑
i=1

dTi =

k∑
i=1

dTi .

More generally, the GM inequalities for k ≥ max deg(G) hold trivially. Thus GM
holds for graphs of maximum degree 2 by (2.6). Using Duval and Reiner’s result
(2.7), we get that GM holds for graphs of maximum degree 3.

3.5. Trees and more. It is tempting to try to prove GM inductively by breaking
graphs into simpler components on which GM clearly holds. In this section, we show
that if G is “almost” the union of two smaller graphs on which GM holds, then GM
holds for G as well. We apply this construction to show that GM holds for trees.

Take two graphs A = (VA, EA) and B = (VB , EB) on disjoint vertex sets VA and
VB . Define their disjoint sum to be A+B = (VA∪VB , EA∪EB). Assuming VA and VB

are not empty, this is a disconnected graph. Now take two graphs G = (V,EG) and
H = (V,EH) on the same vertex set V . Define their union as G∪H = (V,EG ∪EH).

Given the spectra and conjugate degree sequences of A and B, the spectrum
of A + B is (up to ordering) λ(A + B) = (λ(A), λ(B)), while the conjugate degree
sequence of A+B is dT (A+B) = dT (A) + dT (B) (taking each vector to have length
n). Then if λ(A) � dT (A) and λ(B) � dT (B), we see that

λ(A + B) � λ(A) + λ(B) � dT (A) + dT (B) = dT (A + B),

where the first majorization follows from Lemma 2.6 and the second from (2.3).

In a typical situation, where neither A or B is very small, we would expect the
majorization λ(A+B) � dT (A+B) to hold with considerable slack. We can use this
slack to show that if we add a few more edges to A + B, the majorization will still
hold.

Theorem 3.1. Take graphs A or B on disjoint vertex sets VA and VB. Let
G = A + B, and on V = VA ∪ VB let C be a graph of “new edges” between VA and
VB. Assume that GM holds on A, B, and C, i.e., that λ(A) � dT (A), λ(B) � dT (B),
and λ(C) � dT (C). Additionally, assume that dTi (C) ≤ dTi (A), dTi (B) for all i and
that dT1 (B) ≤ dTm(A), where m is the largest nonzero index of dT (C) (equivalently, m
is the maximum vertex degree in C). Let H = C ∪G. Then

λ(H) � dT (H).(3.1)

Proof. Our strategy is to understand dT (H) in terms of the conjugate degree
sequences of its constituent graphs. In particular, we show that

sort(dT (A), dT (B)) + dT (C) � dT (H).(3.2)
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Then we can apply the majorizations of λ by dT for A,B,C to the above terms and
apply (2.3) to get

sort(λ(A), λ(B)) + λ(C) � sort(dT (A), λ(B)) + λ(C)
� sort(dT (A), dT (B)) + λ(C) � sort(dT (A), dT (B)) + dT (C)� dT (H).

The two terms on the left-hand side of this equation are spectra of L(G) and L(C),
respectively. Hence by Lemma 2.6 their sum majorizes the spectrum of L(H) =
L(G) + L(C):

λ(H) � λ(G) + λ(C) � dT (H).

It remains to prove (3.2), which is a statement entirely about conjugate degree se-
quences. For convenience, we will use the terminology of Ferrer’s diagrams to describe
these nonincreasing nonnegative integer sequences. That is, if s is such a sequence,
we will describe s as a diagram of rows and columns with row i (reading from top
to bottom) of length s(i) and hence column j (reading from left to right) of length
sT (j).

We begin with the following.
Claim 3.2. Let k be the larger of max deg(A) and max deg(B). We have

(dT1 (G), dT2 (G), . . . , dTk (G), dT1 (C), . . . , dTm(C)) � dT (H).

Proof of claim. The term on the right-hand side is the concatenation of two
partitions, dT (G) and dT (C). The columns of dT (G) index the vertices of G, and the
length of a column gives the degree of the corresponding vertex. Since this claim is
purely about degree sequences, we introduce a series of intermediate “partial graphs”
where edges are allowed to have only one end. Degree sequences and their conjugates
are still well defined for such objects.

Consider two copies of V , calling them V 1 and V 2. Take G0 = G on V 1 and
C0 = C on V 2. Let l = 2 max deg(C). For i = 1, 2, . . . , l, define graphs Gi and Ci by
moving one end of one edge from each nonisolated vertex of Ci−1 on V 1 to V 2. That
is, let Gi be Gi−1 plus these additional ends of edges, and let Ci be Ci−1 with these
ends of edges removed. Then we will have Gl = H, and Cl will be the empty graph
0V 2 on V 2.

We can now prove the claim via a chain of l majorizations:

dT (G), dT (C) = dT (G0), d
T (C0) � · · · � dT (Gl), d

T (Cl) = dT (H), dT (0V 2) = dT (H)

if we can show that, for each i = 1, 2, . . . , l,

dT (Gi−1), d
T (Ci−1) � dT (Gi), d

T (Ci).(3.3)

Compare the partitions in (3.3): The first row of dT (Ci−1) on the left-hand side
is removed, and each element from that row is inserted into a separate column of
dT (Gi−1) (representing a distinct vertex) to get dT (Gi). Where there are columns of
equal length in dT (Gi−1), they should be ordered so that those acquiring new elements
come first. To see that this operation increases (or leaves unchanged) the partition in
the majorization partial order, observe that after ignoring the (unchanged) contents
of dT (Ci) it is equivalent to sorting the new row into the partition dT (Gi−1), using
Lemma 2.4 to move its final (rightmost) element to the proper column and repeating
as necessary.
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This completes the proof of the Claim 3.2. We note that

dT (G) = dT (A) + dT (B)

= (dT1 (A) + dT1 (B), dT2 (A) + dT2 (B), . . . , dTk (A) + dTk (B), 0, . . . , 0),

and hence

(dT1 (A) + dT1 (B), dT2 (A) + dT2 (B), . . . , dTk (A) + dTk (B), dT1 (C), . . . , dTm(C)) � dT (H).

If we sort the vector on the left into nonincreasing order, the first m terms will remain
fixed by the assumptions that dTm(A) ≥ dT1 (B) ≥ dT1 (C). Since we have assumed that
dTi (C) ≤ dTi (B) for all i, we can apply Lemma 2.4 to the reordered sequence to get

(dT1 (A) + dT1 (C),dT2 (A) + dT2 (C), . . . , dTm(A) + dTm(C),

dTm+1(A), . . . , dTk (A), dT1 (B), . . . , dTk (B)) � dT (H).

The right-hand term decomposes as

(dT1 (A), . . . , dTk (A), dT1 (B), . . . , dTk (B)) + (dT1 (C), . . . , dTm(C), 0, . . . , 0).

Since we assume dTm(A) ≥ dT1 (B), the first m entries of (dT (A), dT (B)) will remain
unchanged if the vector is sorted. This gives (3.2) and completes the proof of Theo-
rem 3.1.

More generally, we could replace the conditions in the statement of Theorem 3.1
with the condition (3.2), which can be checked combinatorially. The conditions in the
theorem statement and (3.2) are most likely to be satisfied if C is small relative to A
and B.

A useful case is when C consists of k disjoint edges. Then m = 1 and dT1 (C) = 2k.
Without loss of generality, we can take d1(A) ≥ d1(B), and the only condition that
we will need to check is that d1(A), d1(B) ≥ d1(C); i.e., both A and B must have at
least 2k nonisolated vertices.

The strategy for applying Theorem 3.1 to show that a given graph H satisfies
GM is to find a “cut” C for it that contains few edges and divides H into relatively
large components. For example, we have the following result.

Corollary 3.3. The GM conjecture holds for trees.
Proof. Proceed by induction on the diameter of the graph. If T has diameter 1

or 2, then there is a vertex v which is the neighbor of all the remaining vertices, and
T is a threshold graph. So GM holds with equality for T .

Otherwise, we can find some edge e that does not have a leaf vertex. Since T is a
tree, e is a cut edge and divides T into two nontrivial connected components, A and
B. We apply induction to A and B and apply Theorem 3.1 to H = (A + B) ∪ C,
where C is the graph on the vertex set of T containing the single edge e.

Remark 3.4 (small graphs). The facts in this section allow us to check that GM
holds for some small graphs without directly computing eigenvalues. For example,
since the GM condition is closed under complement (see section 3.2) for graphs on up
to 5 vertices, it is enough to observe that either G or G has maximum degree ≤ 3. Out
of 156 graphs on 6 vertices, 146 can be decomposed into smaller graphs (A + B) ∪ C
using Theorem 3.1. Calculating the eigenvalues of the remaining 10 does not yield a
counterexample.

For any particular larger graph G, we could attempt to verify that GM holds for
G by breaking G (or G) into smaller graphs across cuts that have relatively few edges
and applying Theorem 3.1.
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4. Simplices and pairs. The most recent work relating to the GM conjecture
has been to study the spectra of more general structures than graphs, such as simplicial
complexes and simplicial family pairs. In this section, we show that the generalization
of GM to graphs with Dirichlet boundary conditions is equivalent to the original
conjecture and may be useful in approaching GM.

4.1. Simplicial complexes. In [4], the authors look at simplicial complexes,
which are higher-dimensional analogues of simple graphs (see, for example, [10]). A
set of faces of a given dimension i is called an i-family. Given a simplicial complex
Δ, we can denote the i-family of all faces in Δ of dimension i as Δ(i). For example,
a graph is a one-dimensional complex, and its edge set is the 1-family Δ(1). Define
the degree sequence d of an i-family to be the list of the numbers of i-faces from
the family incident on each vertex and sorted into nonincreasing order. We can then
define d(Δ, i) as the degree sequence of Δ(i), which we can abbreviate to d(Δ) or d
when the context is clear.

We define the chain group Ci(Δ) of formal linear combinations of elements of
Δ(i) and generalize the signed incidence matrix ∂ of section 2.1 to a signed boundary
map ∂i : Ci(Δ) → Ci−1(Δ). This allows us to define a Laplacian on Ci(Δ), namely
Li(Δ) = ∂i∂

T
i , and study its corresponding spectrum s(Δ, i), sometimes abbreviated

s(Δ) or s.
Duval and Reiner [4] looked at shifted simplicial complexes, which are a general-

ization of threshold graphs to complexes. They showed that for a shifted complex Δ
and any i, we have s(Δ, i) = dT (Δ, i). They then conjectured that GM also holds for
complexes, i.e., that for any complex and any i we have

s(Δ, i) � dT (Δ, i).(4.1)

They also show that some related facts, such as (2.6), generalize to complexes.

4.2. Simplicial pairs. In [3], Duval continues by studying relative (family) pairs
(K,K ′), where the set K = Δ(i) for some i is taken modulo a family of (i− 1)-faces
K ′ ⊆ Δ(i−1). When K ′ = ∅, this reduces to the situation of the previous section.

Remark 4.1. In the case i = 1, this is the edge set of a graph (K) with a set
of deleted boundary vertices K ′. An edge attached to a deleted vertex will not be
removed—it remains as part of the pair, but we now think of the edge as having a
hole on one (or both) ends.

This type of graph with a boundary appears in conformal invariant theory. In this
language, the relative Laplacian of an (edge, vertex) pair is sometimes referred to as a
Dirichlet Laplacian and its eigenvalues as Dirichlet eigenvalues; see, for example, [2].
Recently [1] used the spectrum of the Dirichlet Laplacian in the analysis of “chip-firing
games,” which are processes on graphs that have an absorbing (Dirichlet) boundary
at some vertices.

We can form chain groups Ci(K) and Ci−1(K,K ′) and use these to define a
(signed) boundary operator on the pair ∂(K,K ′) : Ci(K) → Ci−1(K,K ′). Hence
we get a Laplacian for family pairs L(K,K ′) = ∂(K,K ′)∂(K,K ′)T . Considered as a
matrix, L(K,K ′) will be the principal submatrix of L(K) whose rows are indexed by
the i-faces in Δ(i−1) −K ′. Finally, we get a spectrum s(K,K ′) for family pairs from
the eigenvalues of L(K,K ′).

Duval defines the degree dv(K,K ′) of vertex v (in the case of a graph, v is allowed
to be in K ′) relative to the pair (K,K ′) as the number of faces in K that contain v
such that K − {v} is in Δ(i−1) −K ′. This allows him to define the degree sequence
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d(K,K ′) for pairs and to conjecture that GM holds for relative pairs:

s(K,K ′) � dT (K,K ′).(4.2)

4.3. The GM conjecture for relative pairs. It turns out that at least in the
case of (edge, vertex) pairs that (4.2) follows from the original GM conjecture for
graphs.

Theorem 4.2. GM for graphs ⇒ GM for (edge, vertex) pairs.
Proof. Let G = (V,E) be a graph with D ⊆ V a set of “deleted” vertices. Let

U = V − D be the remaining “undeleted” vertices. We will assume that GM holds
only on the undeleted part of the graph, i.e., G|U . So we have s(G|U )� dT (G|U ). We
can ignore the edges in G|D completely, since they have no effect on either s(E,D)
or d(E,D). The remaining edges connect vertices in D to vertices in U . Define G′ to
be the graph on V whose edge are exactly the edges of G between D and U . Let a
be the degree sequence of the deleted vertices in G′ and b be the degree sequence of
the undeleted vertices in G′.

We can compute dT (E,D) in terms of the degree sequences and spectra of G|U ,
G′, and G|D, since dTi (E,D) is the number of vertices (deleted or not) attached to at
least i nondeleted vertices. The number of such vertices in U will be dTi (G|U ), and
the number in D will be dTi (G′) = aT . Hence dT (E,D) = dTi (G|U ) + aT .

Now consider the Laplacian L(E,D). This is the submatrix of L(G) indexed by
U . An edge (i, j) in G|U contributes to entries ii, ij, ji, jj in both L(E,D) and L(G).
An edge in G′, say from i ∈ U to j ∈ D, contributes only to entry ii, and an edge
in G|D, does not affect L(E,D). So we have L(E,D) = L(G|U ) + Diag(b), and by
Lemma 2.6 we have

s(E,D) � s(G|U ) + b.(4.3)

We complete our equivalence by appealing to the Gale–Ryser theorem, (2.4), to
claim that b � aT . This follows from the fact that a and b are row and column sums
(in nonincreasing order) of the |D|×|U | bipartite incidence matrix for G′. Combining
with the assumption that s(G|U ) � dT (G|U ) and (4.3), we get

s(E,D) � s(G|U ) + b � dT (G|U ) + aT = dT (E,D).

This proof relies on the bipartite structure of G′, and so it is not immediately
obvious how to extend it to higher-dimensional complexes. It would be interesting to
do this.

Remark 4.3. Because the induction used to prove Theorem 4.2 requires only that
the “undeleted” part of the graph satisfy GM, it is tempting to attack the original
GM conjecture by showing that if GM holds for a pair (G, {v}), then GM holds for
G.
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