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THE DISTRIBUTION OF VALUES IN THE
QUADRATIC ASSIGNMENT PROBLEM

ALEXANDER BARVINOK and TAMON STEPHEN

We obtain a number of results regarding the distribution of values of a quadratic function f on
the set of n×n permutation matrices (identified with the symmetric group Sn) around its optimum
(minimum or maximum). We estimate the fraction of permutations � such that f ��� lies within a
given neighborhood of the optimal value of f and relate the optimal value with the average value of
f over a neighborhood of the optimal permutation. We describe a natural class of functions (which
includes, for example, the objective function in the Traveling Salesman Problem) with a relative
abundance of near-optimal permutations. Also, we identify a large class of functions f with the
property that permutations close to the optimal permutation in the Hamming metric of Sn tend to
produce near optimal values of f (such is, for example, the objective function in the symmetric
Traveling Salesman Problem). We show that for general f , just the opposite behavior may take
place: an average permutation in the vicinity of the optimal permutation may be much worse than
an average permutation in the whole group Sn.

1. Introduction. The Quadratic Assignment Problem (QAP for short) is an optimiza-
tion problem on the symmetric group Sn of n! permutations of an n-element set. The QAP
is one of the hardest problems of combinatorial optimization, whose special cases include
the Traveling Salesman Problem (TSP) among other interesting problems.
Recently, the QAP has been of interest to many people. An excellent survey is found

in Burkard et al. (1999). Despite this work, it is still extremely difficult to solve QAP’s
of size n = 20 to optimality, and the solution to a QAP of size n = 30 is considered
noteworthy (see, for example, Anstreicher et al. 2002 and Brüngger et al. 1998). There are
some approximability results known for special classes of QAPs (Arkin et al. 2001), but
mostly “bad news” (nonapproximability results) for the general case (Ausiello et al. 1999).
The goal of this paper is to study the distribution of values of the objective function of the

QAP. We hope that our results would allow one, on one hand, to understand the behavior
of various heuristics, and, on the other hand, to estimate the optimum using some simple
algorithms based on random or partial enumeration with guaranteed complexity bounds. In
particular, we estimate how well the sample optimum from a random sample of a given
size approximates the global optimum.

1.1. The Quadratic Assignment Problem. Let Matn be the vector space of all real
n×n matrices A= �aij �, 1 ≤ i� j ≤ n and let Sn be the group of all permutations � of the
set �1� 
 
 
 � n�. There is an action of Sn on the space Matn by simultaneous permutations of
rows and columns: we let ��A�= B, where A= �aij � and B = �bij �, provided b��i���j� = aij
for all i� j = 1� 
 
 
 � n. One can check that ����A = ���A� for any two permutations �
and � . There is a standard scalar product on Matn:

�A�B� =
n∑

i� j=1

aijbij where A= �aij � and B = �bij ��
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Let us fix two matrices A = �aij � and B = �bij � and let us consider a real-valued function
f � Sn → � defined by

f ���= �B���A�� =
n∑

i� j=1

b��i���j�aij =
n∑

i� j=1

bija�−1�i��−1�j��(1.1.1)

The problem of finding a permutation � where the maximum or minimum value of f is
attained is known as the Quadratic Assignment Problem (QAP). It is one of the hardest
problems of combinatorial optimization. From now on we assume that n≥ 4.
We contrast the QAP with the Linear Assignment Problem (LAP) of maximizing

f ���=
n∑
i=1

di��i�

for a given n×n matrix D = �dij�. The LAP is again an optimization problem on the set
of permutations. However, there is a well-known polynomial time algorithm for the LAP
described, for example, in Papadimitriou and Steiglitz (1982).
Our approach produces essentially identical results for a more general problem.

1.2. The generalized problem. Suppose we are given a 4-dimensional array (tensor)
C = �c

ij
kl � 1≤ i� j� k� l ≤ n� of n4 real numbers and the function f is defined by

f ���=
n∑

i� j=1

c
ij
��i���j��(1.2.1)

If cijkl = aijbkl for some matrices A= �aij � and B = �bkl�, we get the special case (1.1.1) we
started with. The convenience of working with the generalized problem is that the set of
objective functions (1.2.1) is a vector space. This problem was considered in Lawler (1963).
We introduce the standard Hamming metric on the symmetric group Sn.
1.3. Definition. For two permutations ��� ∈ Sn, let the distance dist��� �� be the

number of indices 1≤ i ≤ n where � and � disagree:

dist��� ��= �i � ��i� �= ��i���
One can observe that the distance is invariant under the left and right actions of Sn:

dist���1���2�= dist��1��2�= dist��1���2��

for all �1��2�� ∈ Sn.
For a permutation � and an integer k ≥ 0, we consider the “kth sphere” around � :

U���k�= �� ∈ Sn � dist��� ��= n−k��

Hence, for any permutation � the group Sn splits into the disjoint union of n spheres U���k�
for k = 0�1� 
 
 
 � n−2� n. The sphere U���k� consists of the permutations that agree with
� on precisely k symbols.
Let f � Sn → � be a function of type (1.1.1) or (1.2.1). Let


f = 1
n!

∑
�∈Sn

f ���

be the average value of f on the symmetric group and let

f0 = f − 
f
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be the “shifted” function. Hence, the average value of f0 is 0. Let � be a permutation where
the maximum value of f0 is attained, so f0���≥ f0��� for all � ∈ Sn and f0��� > 0 unless
f0 ≡ 0. Because we measure the deviation from 0, we can analyze minimization problems
by replacing f0 with −f0 and studying the related maximization problem. We maintain
the definitions of 
f , f0, and � in future sections.
We are interested in the following questions:
• Given a constant 0 < � < 1, how many permutations � ∈ Sn satisfy f0��� ≥ �f0���?

In particular, how well does the sample optimum of a set of randomly chosen permutations
approximate the true optimum?
• How does the average value of f0 over the kth sphere U���k� compare with the

optimal value f0���? In particular, is a random permutation from the vicinity of the optimal
permutation better than a random permutation from the whole group Sn?

We remark that it is easy to compute the average value 
f (see Lemma 6.1).
This paper is organized as follows. In §§2–5 we state our main results for the general

QAP (§5) and its particular cases (§§2–4), and in §§6–11 we provide proofs. In §12, we
formulate some open problems.
1.4. Notation. For an integer m≥ 0, let

dm =
m∑
j=0

�−1�j
1
j! �

For m≥ 2, let

��m�= dm−2

dm
�

It is convenient to agree that ��0�= 0 (and ��1� is not defined). One can see that

lim
m→+���m�= 1

and that 0 ≤ ��m� < 1 if m is odd and ��m� > 1 if m≥ 2 is even.
The following functions p and t on the symmetric group Sn play a special role in our

approach. For a permutation � ∈ Sn, let

p���= �i � ��i�= i�
be the number of fixed points of � and let

t���= �i < j � ��i�= j and ��j�= i�
be the number of 2-cycles in � .
One can show that p���, p2���, and t��� are functions of type (1.2.1) for some particular

tensors �cijkl�, (see Remark 7.6). We denote by " the identity permutation in Sn and by �X�
the cardinality of a set X.

2. The bullseye case. Suppose that the matrix A= �aij � in (1.1) is symmetric and has
constant row and column sums and a constant diagonal

aij = aji for all 1≤ i� j ≤ n�

for some a�




n∑
i=1

aij = a for all j = 1� 
 
 
 � n and

n∑
j=1

aij = a for all i = 1� 
 
 
 � n�

aii = b for some b and all i = 1� 
 
 
 � n�
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For example,

A=




0 1 0 
 
 
 0 1
1 0 1 
 
 
 0 0
0 1 0 
 
 
 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


0 0 0 
 
 
 0 1
1 0 0 
 
 
 1 0



� aij =

{
1 if �i− j� = 1 mod n�

0 otherwise,

satisfies these properties and the corresponding optimization problem is the Symmetric Trav-
eling Salesman Problem.
Similarly, for the generalized problem (1.2) we assume that for any k and l the matrix

A = �aij �, where aij = c
ij
kl, is symmetric with constant row and column sums and has a

constant diagonal.
It turns out that the optimum has a characteristic “bullseye” feature with respect to the

averages over the sphere U���k� (see Definition 1.3).

2.1. Theorem. Let

$�n�k�= k2−3k+��n−k�

n2−3n
�

where k = 0�1� 
 
 
 � n−2� n and � is the function defined in (1.4). Then, we have

1
�U���k��

∑
�∈U���k�

f0���= $�n�k�f0���

for k = 0�1� 
 
 
 � n−2� n.

In fact, this result holds even if we do not require � to maximize f0.

2.2. The “bullseye” distribution. We observe that as the sphere U���k� contracts to
the optimal permutation � (hence k increases), the average value of f on the sphere steadily
improves (as long as k ≥ 3); see Figure 1.
It is easy to construct examples where some values of f in a very small neighborhood

of the optimum are particularly bad, but as follows from Theorem 2.1, such values are
relatively rare. In our opinion, this suggests that this special case may be more amenable
to local search type heuristics (see, for example, Burkard et al. 1999) than the general

Maximum value Large average

from the maximum point

Medium average 

Distribution of values of the objective function with respect to the Hamming distance

Small average 

Figure 1. Bullseye.
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symmetric case (cf. §4). Incidentally, one can observe the same type of the “bullseye”
behavior for the LAP and some other polynomially solvable problems, such as the weighted
Matching Problem.
Estimating the size of the sphere U���k�, we get the following result.

2.3. Theorem. Let us choose an integer 3≤ k≤ n−3 and a number 0< � < 1 and let

%�n�k�= k2−3k
n2−3n

�

The probability that a random permutation � ∈ Sn satisfies the inequality

f0���≥ �%�n�k�f0���

is at least
�1−��%�n�k�

3k! �

We prove our results in §8.

3. The pure case. In this section, we consider a more general case of a not necessarily
symmetric matrix A in (1.1) having constant row and column sums and a constant diagonal:

for some a




n∑
i=1

aij = a for all j = 1� 
 
 
 � n and

n∑
j=1

aij = a for all i = 1� 
 
 
 � n�

aii = b for some b and all i = 1� 
 
 
 � n�

For example, matrix

A=




0 1 0 
 
 
 
 
 
 
 
 
 0
0 0 1 0 
 
 
 
 
 
 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


0 0 
 
 
 
 
 
 
 
 
 0 1
1 0 
 
 
 
 
 
 
 
 
 
 
 
 0


 � aij =

{
1 if j = i+1 mod n�

0 otherwise�

satisfies these properties and the corresponding optimization problem is the Asymmetric
Traveling Salesman Problem.
Similarly, for generalized problems (see 1.2) we assume that for any k and l the matrix

A= �aij �, where aij = c
ij
kl has constant row and column sums and has a constant diagonal.

These conditions can be generalized further (see Stephen 2002).
We call this case pure, because as we remark in §§7 and 9, the objective function f lacks

the component attributed to the LAP. More generally, an arbitrary objective function f in
the QAP can be represented as a sum f = f1+ f2, where f1 is the objective function in a
LAP and f2 is the objective function in some pure case.
The behavior of averages of f0 over the sphere U���k� is described by the following

result.

3.1. Theorem. Let us define three functions of n and k:

$1�n� k� = 1−��n−k��
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$2e�n� k� =
k2−3k−n−3��n−k�+��n−k�n+4

n2−4n+4
� and

$2o�n� k� =
k2−3k−n−2��n−k�+��n−k�n+3

n2−4n+3
�

where k = 0�1� 
 
 
 � n−2� n and � is the function defined in (1.4).
If n is even, then for some nonnegative �1 and �2 such that �1+�2 = 1, we have

1
�U���k��

∑
�∈U���k�

f0���=
(
�1$1�n� k�+�2$2e�n� k�

)
f0���

for k = 0�1� 
 
 
 � n−2� n.
If n is odd, then for some nonnegative �1 and �2 such that �1+�2 = 1, we have

1
�U���k��

∑
�∈U���k�

f0���=
(
�1$1�n� k�+�2$2o�n� k�

)
f0���

for k = 0�1� 
 
 
 � n−2� n.

Unlike Theorem 2.1, Theorem 3.1 may not hold if � is not the optimal permutation.
It follows from our proof (see Remark 9.3) that for any choice of �1� �2 ≥ 0 such that

�1+�2 = 1, there is a function f of type (1.2.1) for which the averages of f0 over U���k�
are given by the formulas of Theorem 3.1.
We observe that there are two extreme cases. If �1 = 0 and �2 = 1, then f exhibits a

bullseye type distribution of §2.2. If �1 = 1 and �2 = 0, then f exhibits a “damped oscillator”
type of distribution: the average value of f0 over U���k� changes its sign with the parity of
k and approaches 0 fast as k gets smaller. In short, if f has a damped oscillator distribution,
there is no particular advantage in choosing a permutation in the vicinity of the optimal
permutation � ; see Figure 2.
For a typical function f one can expect both �1 and �2 positive, so f would show a

“diluted” bullseye distribution: the average value of f0 over U���k� improves moderately
as k increases, but not as dramatically as in the bullseye case of §2.
Still, it turns out that we can find sufficiently many reasonably good permutations in the

vicinity of the optimal permutation.

to the Hamming distance from the maximum point
Distribution of values of the objective function with respect 

Maximum
value

Large average Medium average Small average 

Figure 2. Damped oscillator.
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3.2. Theorem. Let us choose an integer 3≤ k≤ n−3 and a number 0<� < 1, and let

%�n�k�= k2−3k+1
n2−3n+1

�

The probability that a random permutation � ∈ Sn satisfies the inequality

f0���≥ �%�n�k�f0���

is at least
�1−��%�n�k�

10k! �

Moreover, the statement of the theorem holds if we require, additionally, that � ∈U���k�
(see Remark 9.5).
In particular, by choosing an appropriate k, we obtain the following corollary.

3.3. Corollary. (1) Let us fix any $> 1. Then, there exists (= (�$� > 0 such that for
all sufficiently large n ≥ N�$� the probability that a random permutation � in Sn satisfies
the inequality

f0���≥
$

n2
f0���

is at least (n−2. In particular, one can choose ( = exp�−c√$ ln$� for some absolute
constant c > 0.

(2) Let us fix any * > 0. Then, there exists ( = (�*� < 1 such that for all sufficiently
large n≥ N�$� the probability that a random permutation � in Sn satisfies the inequality

f0���≥ n−*f0���

is at least exp�−n(�. In particular, one can choose any ( > 1− */2. �

It follows from Corollary 3.3 that to get a permutation � which satisfies (1) for any
fixed $, we can use the following straightforward randomized algorithm: sample ,�n�n2

random permutations � ∈ Sn, where ,�n�→+� arbitrarily slowly, compute the value of f ,
and choose the best permutation. With probability tending to 1 as n→ +�, we will hit
the right permutation. If we are willing to settle for a mildly exponential sized sample of
the type exp�n%� for some % < 1, we can achieve a better approximation (2) by searching
through a set of randomly selected exp�n%� permutations. We remark that no algorithm
solving the QAP (even in the special case considered in this section) with an exponential
in n complexity exp�O�n�� is known, although there is a dynamic programming algorithm
solving the TSP in exp�O�n�� time.
We prove our results in §9.

4. The symmetric case. In this section, we assume that the matrix A= �aij �� Subsec-
tion 1.1 is symmetric, that is

aij = aji for all 1≤ i� j ≤ n�

Similarly, in the generalized problem (1.2) we assume that for any k and l the matrix
A= �aij �, where aij = c

ij
kl, is symmetric.

Overall, the distribution of values of f turns out to be much more complicated than in
the special cases described in §§2 and 3.
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4.1. Theorem. Let us define three functions of n and k:

$1�n� k� =
2nk−2n−k2−3k−��n−k�+6

n2−5n+6
�

$2e�n� k� =
−nk+n+k2+k+��n−k�−4

2n−4
� and

$2o�n� k� =
−n2k+nk2+n2+nk+n��n−k�−4n−3k+3

2n2−7n+3
�

where k = 0�1� 
 
 
 � n−2� n and � is the function defined in (1.4).
If n is even, then for some nonnegative �1 and �2 such that �1+�2 = 1, we have

1
�U���k��

∑
�∈U���k�

f0���=
(
�1$1�n� k�+�2$2e�n� k�

)
f0���

for k = 0�1� 
 
 
 � n−2� n.
If n is odd, then for some nonnegative �1 and �2 such that �1+�2 = 1, we have

1
�U���k��

∑
�∈U���k�

f0���=
(
�1$1�n� k�+�2$2o�n� k�

)
f0���

for k = 0�1� 
 
 
 � n−2� n.

It follows from our proof (see Remark 10.3) that for any choice of �1� �2 ≥ 0 such that
�1+�2 = 1, there is a function f of type (1.2.1) for which the averages of f0 over U���k�
are given by the formulas of Theorem 4.1. Moreover, at least for even n, one can choose
f to be a function of type (1.1.1), but we don’t prove that here (it is included in Stephen
2002).

4.2. The “spike” distribution. As in §3, we see that there are two extreme cases. If
�1 = 1 and �2 = 0, then f has a bullseye-type distribution described in §2.2. If �1 = 0 and
�2 = 1, then f has what we call a “spike” distribution; see Figure 3.
In this case, for 2 ≤ k ≤ n− 3 the average value of f0 over U���k� is negative. Thus,

an average permutation � ∈ U���n−3� presents us with a worse choice than the average
permutation in Sn. However, the average value of f0 over U���0� is about one half of the
maximum value f0���. Thus, there are plenty of reasonably good permutations very far
from � and we can easily get such a permutation by random sampling.

Maximum value Small average Large average

from the maximum point
Distribution of values of the objective function with respect to the Hamming distance

Figure 3. Spike.
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The distribution of a typical function f around its optimal permutation in the symmetric
QAP is a certain mixture of the bullseye and spike distributions. This interference of the
bullseye and spike distributions (which, in some sense, are “pulling in the opposite direc-
tions”) provides, in our opinion, a plausible explanation of the computational hardness of
the general symmetric QAP even in comparison with other NP-hard problems such as the
TSP.
We obtain the following estimate for the number of near-optimal permutations.

4.3. Theorem. Let us choose an integer 3≤ k≤ n−3 and a number 0<� < 1, and let

%�n�k�= 3k−5
n2−kn+k+2n−5

�

The probability that a random permutation � ∈ Sn satisfies the inequality

f0���≥ �%�n�k�f0���

is at least
�1−��%�n�k�

5k!2k �

One can notice that the obtained bound is essentially weaker than the bounds of Theorems
2.3 and 3.2. In Stephen (2002), we show that at least for the generalized problem (1.2),
the bounds of §§2 and 3, and Corollary 3.3, in particular, do not extend. The question of
whether the estimates can be improved for problem (1.1) remains open. We prove the results
of this section in §10.

5. The general case. It appears that the difference between the general case of prob-
lems (1.1) and (1.2) and the symmetric case of §4 is not as substantial as the difference
between the symmetric case and the special cases of §§2 and 3.
First, we describe the behavior of averages of f0 over the spheres U���k�.

5.1. Theorem. Let us define five functions of n and k:

$1�n� k� =
−k�n−k�+n−2

n−2
�

$2�n� k� = 1−��n−k��

$3�n� k� =
2nk−3k−2n−k2−��n−k�+6

n2−5n+6
�

$4�n� k� =
k+��n−k�−2

n−2
� and

$5o�n� k� =
−2nk+3k2−3k+��n−k�n+n−3

n2−2n−3
�

where k = 0�1� 
 
 
 � n−2� n and � is the function of Subsection 1.4.
If n is even, then for some nonnegative �1� �2� �3, and �4 such that �1+�2+�3+�4 = 1,

we have

1
�U���k��

∑
�∈U���k�

f0���=
(
�1$1�n� k�+�2$2�n� k�+�3$3�n� k�+�4$4�n� k�

)
f0���

for k = 0�1� 
 
 
 � n−2� n.
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If n is odd, then for some nonnegative �1� �2� �3� �4, and �5 such that �1+�2+�3+�4+
�5 = 1, we have

1
�U���k��

∑
�∈U���k�

f0���

= (
�1$1�n� k�+�2$2�n� k�+�3$3�n� k�+�4$4�n� k�+�5$5o�n� k�

)
f0���

for k = 0�1� 
 
 
 � n−2� n.

It follows from our proof (see Remark 11.3) that for any choice of �1� 
 
 
 � �4 ≥ 0 (n even)
or �1� 
 
 
 � �5 ≥ 0 (n odd) summing up to 1, there is a function f of type (1.2.1) for which
the averages of f0 over U���k� are given by the formulas of Theorem 5.1. Moreover, at
least for even n, one can choose f to be a function of type (1.1.1), but we don’t prove that
here (see Stephen 2002).
Letting all but one � equal to 0, we obtain various extreme distributions: the bullseye

(when �3 = 1 or �4 = 1, cf. §2), damped oscillator (when �2 = 1, cf. §3), and spike (when
�1 = 1 or �5o = 1, cf. §4) types. We do not get any new type of distribution, but we can
find a sharper spike than in the symmetric case.

5.2. Example of the sharp spike. Let us consider the function

f ���= −p����n−p����+n−2
n−2

�

where p��� is the number of fixed points of � (see §1.4). In §11 (cf. Remark 11.3), we
show that f is a function of type (1.2.1) and that 
f = 0. The maximum value of 1 is
attained at the identity and at the permutations without fixed points. All other values of f
are negative; see Figure 4.
One can construct a function of type (1.1.1) whose average values over the spheres

U�"�k�, where " is the identity permutation, coincide with those for f .
Our bound for the number of nearly optimal permutations is only slightly weaker than

the bound of Theorem 4.3 in the symmetric case.

5.3. Theorem. Let us choose an integer 3≤ k≤ n−3 and a number 0<� < 1, and let

%�n�k�= k−2

n2−nk+k−2
�

Below average value 

from the maximum point

Maximum value 

with respect to the Hamming distance 
Distribution of values of the objective function

Figure 4. Sharp spike.
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The probability that a random permutation � ∈ Sn satisfies

f0���≥ �%�k�n�f0���

is at least
�1−��%�k�n�

5k! �

By choosing an appropriate k, we obtain the following corollary.

5.4. Corollary. (1) Let us fix any $> 1. Then there exists (= (�$� > 0 such that for
all sufficiently large n≥ N�$�, the probability that a random permutation � in Sn satisfies
the inequality

f0���≥
$

n2
f0���

is at least (n−2. In particular, one can choose (= exp�−c$ ln$� for some absolute constant
c > 0.

(2) Let us fix any * > 0. Then there exists (= (�*� < 1 such that for all sufficiently large
n≥ N�*�, the probability that a random permutation � in Sn satisfies the inequality

f0���≥ n−1−*f0���

is at least exp�−n(�. In particular, one can choose any ( > 1− *. �

As in §3, we conclude that for any fixed $ > 1, the randomized algorithm of sampling
,�n�n2 permutations, where ,�n�→+� arbitrarily slowly, produces a permutation � sat-
isfying (1) with probability tending to 1 as n→ +�. This simple randomized algorithm
produces a better bound in a more general situation than some known deterministic algo-
rithms based on semidefinite relaxations of the QAP (cf. Ye 1999 and references therein).
If we are willing to settle for an algorithm of mildly exponential complexity, we can

achieve the bound of type (2), which is weaker than the corresponding bound of Corol-
lary 3.3.
We prove our results in §11.

6. Preliminaries. First, we show that it is indeed easy to compute the average value

f of a function f defined by (1.1.1) or (1.2.1). The result is not new (see, for example,
Graves and Whinston 1970). We state it here for the sake of completeness.

6.1. Lemma. Let f � Sn → � be a function defined by (1.1.1) for some n×n matrices
A= �aij �, and B = �bij �. Let us define

$1 =
∑

1≤i �=j≤n
aij � $2 =

n∑
i=1

aii� and

%1 =
∑

1≤i �=j≤n
bij � %2 =

n∑
i=1

bii�

Then,

f = $1%1

n�n−1�
+ $2%2

n
�

Similarly, if f is defined by (1.2.1) for some tensor C = {
c
ij
kl

}
, 1≤ i� j� k� l ≤ n, then


f = 1
n�n−1�

∑
1≤i �=j≤n

∑
1≤k �=l≤n

c
ij
kl+

1
n

∑
1≤i� l≤n

ciill�
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Proof. We prove the first part only, because the proof of the the second part is com-
pletely similar. Let us choose a pair of indices 1 ≤ i �= j ≤ n. Then, as � ranges over the
symmetric group Sn, the ordered pair

(
��i����j�

)
ranges over all ordered pairs �k� l� with

1 ≤ k �= l ≤ n and each such a pair �k� l� appears �n−2�! times. Similarly, for each index
1 ≤ i ≤ n, the index ��i� ranges over the set �1� 
 
 
 � n� and each j ∈ �1� 
 
 
 � n� appears
�n−1�! times. Therefore,


f = 1
n!

∑
�∈Sn

n∑
i� j=1

b��i���j�aij =
n∑

i� j=1

(
aij

1
n!

∑
�∈Sn

b��i���j�

)

= 1
n�n−1�

n∑
i �=j

aij%1+
1
n

n∑
i=1

aii%2 =
$1%1

n�n−1�
+ $2%2

n

and the proof follows. �

6.2. Remark. Suppose that f ���=�B���A�� for some matrices A and B and all � ∈ Sn
is the objective function in the QAP (1.1), and suppose that the maximum value of f is
attained at a permutation � . Let A1 = ��A� and f1���= �B���A1��. Then f1���= f ����,
hence the maximum value of f1 is attained at the identity permutation " and the distribution
of values of f and f1 is the same. We observe that if A is symmetric, then A1 is also
symmetric, and if A has constant row and column sums and a constant diagonal, then
so does A1 (see also §7). Hence, as far as the distribution of values of f is concerned,
without loss of generality we may assume that the maximum of f is attained at the identity
permutation ". The same is true for functions in the generalized problem (1.2).
Next, we introduce our main tool.
6.3. Definition. Let f � Sn → � be a function. Let us define a function g� Sn → � by

g���= 1
n!

∑
,∈Sn

f �,−1�,��

We call g the central projection of f .
It turns out that the central projection captures some important information regarding the

distribution of values of a function.

6.4. Lemma. Let f � Sn →� be a function and let g be the central projection of f . Then
(1) The averages of f and g over the kth sphere U�"�k� around the identity permutation

coincide:
1

�U�"�k��
∑

�∈U�"�k�
f ���= 1

�U�"�k��
∑

�∈U�"�k�
g����

(2) The average values of f and g on the symmetric group coincide: 
f = 
g.
(3) Suppose that f �"�≥ f ��� for all � ∈ Sn. Then, g�"�≥ g��� for all � ∈ Sn.

Proof. We observe that � ∈ U�"�k� if and only if � has exactly k fixed points. Hence,
for any fixed ,∈ Sn, the permutation ,−1�, ranges over U�"�k� as � ranges over U�"�k�.
Hence,

1
�U�"�k��

∑
�∈U�"�k�

g��� = 1
�U�"�k��

∑
�∈U�"�k�

(
1
n!

∑
,∈Sn

f �,−1�,�

)

= 1
n!

∑
,∈Sn

(
1

�U�"�k��
∑

�∈U�"�k�
f �,−1�,�

)
= 1

�U�"�k��
∑

�∈U�"�k�
f ���

and (1) is proven. Part (2) follows from (1). To prove (3), we note that ,−1",= " for all
, ∈ Sn and hence, g�"�= f �"�. Moreover, for any � ∈ Sn,

g���= 1
n!

∑
,∈Sn

f �,−1�,�≤ 1
n!

∑
,∈Sn

f �"�= g�"�� �
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We will rely on a Markov type estimate, which asserts, roughly, that a function with a
sufficiently large average takes sufficiently large values sufficiently often.

6.5. Lemma. Let X be a finite set and let f � X→� be a function. Suppose that f �x�≤ 1
for all x ∈ X and that

1
�X�

∑
x∈X

f �x�≥ % for some % > 0�

Then, for any 0< � < 1, we have∣∣{x ∈ X � f �x�≥ %�
}∣∣≥ %�1−���X��

Proof. We have

% ≤ 1
�X�

∑
x∈X

f �x�= 1
�X�

∑
x� f �x�<%�

f �x�+ 1
�X�

∑
x� f �x�≥%�

f �x�

≤ %�+
∣∣�x � f �x�≥ %��

∣∣
�X� �

Hence, ∣∣�x � f �x�≥ %��
∣∣≥ %�1−���X�� �

We need some facts about the structure of the symmetric group Sn (see, for example,
Fulton and Harris 1991).

6.6. The conjugacy classes of Sn. Let us fix a permutation 0 ∈ Sn. As , ranges over
the symmetric group Sn, the permutation ,−10, ranges over the conjugacy class X�0� of 0,
that is the set of permutations that have the same cycle structure as 0.
We will be using the following facts.

6.6.1. Central projections and conjugacy classes. If f � Sn → � is a function and
g� Sn → � its central projection, then

g�0�= 1
�X�0��

∑
�∈X�0�

f ����

If X ⊂ Sn is a set which splits into a union of conjugacy classes X�0i�� i ∈ I , and for each
such a class we have

1
�X�0i��

∑
�∈X�0i�

f ���≥ $

for some number $, then
1
�X�

∑
�∈X

f ���≥ $�

6.6.2. Permutations with no fixed points and 2-cycles. Let us fix some positive inte-
gers ci� i = 1� 
 
 
 �m and let an be the number of permutations in Sn that have no cycles
of length ci for 1≤ i ≤m. The exponential generating function for an is given by

�∑
n=0

an
n! x

n = 1
1−x

exp
{
−

m∑
i=1

xci

ci

}
�

where we agree that a0 = 1. (See, for example, pp. 170–173 of Goulden and Jackson
1983.) It follows that the number of permutations � ∈ Sn without fixed points (known
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as derangements) is asymptotically e−1n!. More precisely, it is equal to dnn! see (1.4).
Similarly, the number of derangements without 2-cycles is asymptotically e−3/2n!. We will
use that the first number exceeds n!/3 and the second number exceeds n!/5 for n≥ 3.
We recall in (1.4) that p��� is the number of fixed points and t��� is the number of

2-cycles of a permutation � ∈ Sn. We will need a couple of technical results.

6.7. Lemma. We have

1
�U�"�k��

∑
�∈U�"�k�

t���= 1
2
��n−k��

where � is the function of (1.4) and " is the identity permutation.

Proof. For a pair of indices 1≤ i < j ≤ n, let

tij ���=
{
1 if ��i�= j and ��j�= i�

0 otherwise.

Then, t���=∑
i<j tij ���. Let us compute the average of tij ��� over U�"�k�. To choose a

permutation � ∈ U�"�k�, one has to choose k fixed points in
(
n

k

)
ways and then a derange-

ment on the remaining n−k symbols in dn−k�n−k�! ways. Hence, �U�"�k�� = dn−kn!/k!.
To choose a permutation � ∈ U�"�k� where �ij� is a 2-cycle, one has to choose k fixed
points in

(
n−2
k

)
ways and then a derangement on n−k−2 symbols. Hence, the total number

of permutations � ∈ U�"�k� with tij ���= 1 is

(
n−2
k

)
dn−k−2 �n−k−2�! = �n−2�!dn−k−2

k! �

Thus, for all pairs i < j we have

1
�U�"�k��

∑
�∈U�"�k�

tij ���=
�n−2�!dn−k−2

n!dn−k
= ��n−k�

n�n−1�

and

1
�U�"�k��

∑
�∈U�"�k�

t���=∑
i<j

1
�U�"�k��

∑
�∈U�"�k�

tij ���=
(
n

2

)
��n−k�

n�n−1�
= ��n−k�

2
� �

6.8. Lemma. For a permutation � ∈ Sn, � �= ", let a� ∈ �2 be the point

a� =
(
p����

2t���
n−p���

)
�

Let P = conv�a� � � �= "� be the convex hull of all such points a� .
If n is even, the extreme points of P are

�0�0�� �n−3�0�� �n−2�1�� and �0�1��

If n is odd, the extreme points of P are

�0�0�� �n−3�0�� �n−2�1��
(
0� �n−3�/n

)
� and �1�1��
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Proof. The set of all possible values �p���� t����, where � �= ", consists of all pairs
of nonnegative integers �p� t� such that p ≤ n−2, 2t ≤ n and, additionally, p+2t ≤ n−3
or p+2t = n. To find the extreme points of the set of feasible points �p�2t/�n−p��, we
choose a generic vector ��1� �2� and investigate for which values of p and t the maximum
of

�1p+�2

2t
n−p

is attained.
Clearly, we can assume that �2 �= 0. If �2 < 0, then we should choose the smallest possible

t which would be t = 0 unless p = n−2 when we have to choose t = 1. Depending on the
sign of �1, this produces the following pairs:

�p� t�= {
�0�0�� �n−3�0�� �n−2�1�

}
�

If �2 > 0, then the largest possible value of 2t/�n−p� is 1. If �1 > 0, this produces the
(already included) point

�p� t�= �n−2�1
)
�

If �1 < 0, we get
�p� t�= �0� n/2� for even n

and
�p� t�= {

�0� �n−3�/2�� �1� �n−1�/2�
}

for odd n�

Summarizing, the extreme points of P are

�0�0�� �n−3�0�� �n−2�1�� �0�1� for even n

and
�0�0�� �n−3�0�� �n−2�1��

(
0� �n−3�/n

)
� �1�1� for odd n

as claimed. �

7. Action of the symmetric group in the space of matrices. The crucial observation
for our approach is that the vector space of all central projections g of functions f defined
by (1.1.1) or (1.2.1) is 4-, 3-, or 2-dimensional depending on whether we consider the
general case, the cases of §§3 and 4, or the special case of §2. If we require, additionally,
that 
f = 0, then the dimensions drop by 1 to 3, 2 and 1, respectively. This fact is explained
by the representation theory of the symmetric group (see, for example, Fulton and Harris
1991). In this section, we review some facts that we need. Our notation is inspired by the
generally accepted notation of representation theory.
We describe some important invariant subspaces of the action of Sn in the space of n×n

matrices Matn by simultaneous permutations of rows and columns. We recall that n≥ 4.

7.1. Subspace Ln. Let L1
n be the space of constant matrices A:

aij = $ for some $ and all 1≤ i� j ≤ n�

Let L2
n be the subspace of scalar matrices A:

aij =
{
$ if i = j
0 if i �= j

for some $�

Finally, Let Ln = L1
n+L2

n. One can observe that dimLn = 2 and that Ln is the subspace of
all matrices that remain fixed under the action of Sn.
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7.2. Subspace Ln−1�1. Let L1
n−1�1 be the subspace of matrices with identical rows and

such that the sum of entries in each row is 0:

A=



$1 $2 
 
 
 $n

$1 $2 
 
 
 $n


 
 
 
 
 
 
 
 
 
 
 


$1 $2 
 
 
 $n


 where $1+· · ·+$n = 0�

Similarly, let L2
n−1�1 be the subspace of matrices with identical columns and such that the

sum of entries in each column is 0:

A=



$1 $1 
 
 
 $1

$2 $2 
 
 
 $2


 
 
 
 
 
 
 
 
 
 
 


$n $n 
 
 
 $n


 where $1+· · ·+$n = 0�

Finally, let L3
n−1�1 be the subspace of diagonal matrices whose diagonal entries sum to zero:

A=



$1 0 
 
 
 0 0
0 $2 
 
 
 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 


0 0 
 
 
 0 $n


 where $1+· · ·+$n = 0�

Let Ln−1�1 = L1
n−1�1+L2

n−1�1+L3
n−1�1. One can check that the dimension of each of L1

n−1�1,
L2
n−1�1, and L3

n−1�1 is n− 1 and that dimLn−1�1 = 3n− 3. Moreover, the subspaces L1
n−1�1,

L2
n−1�1, and L

3
n−1�1 do not contain nontrivial invariant subspaces. The action of Sn in Ln−1�1,

although nontrivial, is not very complicated. One can show that if A ∈ Ln−1�1 +Ln, then
problem 1.1 of optimizing f ��� reduces to the LAP.

7.3. Subspace Ln−2�2. Let us define Ln−2�2 as the subspace of all symmetric matrices
A with row and column sums equal to 0 and zero diagonal:

aij = aji for all 1≤ i� j ≤ n�

n∑
i=1

aij = 0 for all j = 1� 
 
 
 � n�

n∑
j=1

aij = 0 for all i = 1� 
 
 
 � n� and

aii = 0 for all i = 1� 
 
 
 � n�

One can check that Ln−2�2 is an invariant subspace and that dimLn−2�2 = �n2 − 3n�/2.
Besides, Ln−2�2 contains no nontrivial invariant subspaces.

7.4. Subspace Ln−2�1�1. Let us define Ln−2�1�1 as the subset of all skew symmetric matri-
ces A with row and column sums equal to 0:

aij =−aji for all 1≤ i� j ≤ n�

n∑
i=1

aij = 0 for all j = 1� 
 
 
 � n� and

n∑
j=1

aij = 0 for all i = 1� 
 
 
 � n�
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One can check that Ln−2�1�1 is an invariant subspace and that dimLn−2�1�1 = �n2−3n�/2+1.
Similarly, Ln−2�1�1 contains no nontrivial invariant subspaces.
One can check that Matn = Ln+Ln−1�1+Ln−2�2 +Ln−2�1�1. The importance of the sub-

spaces (7.1)–(7.4) is explained by the fact that they are the isotypical components of the
irreducible representations of the symmetric group in the space of matrices.
To state the main result of this section, we recall the definitions of the central projection

(see Definition 6.3) and of the functions p and t (see 1.4).

7.5. Proposition. For n× n matrices A and B, where n ≥ 4, let f � Sn → � be the
function defined by (1.1.1) and let g� Sn → � be the central projection of f .

(1) If A ∈ Ln, then g is a scalar multiple of the constant function

4n���= 1 for all � ∈ Sn�

(2) If A ∈ Ln−1�1, then g is a scalar multiple of the function

4n−1�1���= p���−1 for all � ∈ Sn�

(3) If A ∈ Ln−2�2, then g is a scalar multiple of the function

4n−2�2���= t���+ 1
2
p2���− 3

2
p��� for all � ∈ Sn�

(4) If A ∈ Ln−2�1�1, then g is a scalar multiple of the function

4n−2�1�1���=
1
2
p2���− 3

2
p���− t���+1 for all � ∈ Sn�

Proposition 7.5 follows from the representation theory of the symmetric group (see, for
example, Part 1 of Fulton and Harris 1991). The set of all functions f � Sn →� is identified
with the (real) group algebra of the symmetric group. The center of the group algebra is
spanned by the characters of the irreducible representations of Sn. The basic fact that we are
using here is the following: if f is a matrix element in an irreducible representation of the
group, then the central projection must be a scalar multiple of the character of that repre-
sentation. The functions 4n�4n−1�1�4n−2�2, and 4n−2�1�1 are the characters of corresponding
irreducible representations of Sn for n ≥ 4 (see Lecture 4 of Fulton and Harris 1991). The
irreducible characters are linearly independent, and, moreover, orthonormal. In particular,
we will use that

∑
�∈Sn

4n−1�1���=
∑
�∈Sn

4n−2�2���=
∑
�∈Sn

4n−2�1�1���= 0�

Hence, the average value of all but the trivial character 4n is 0.
7.6. Remark. We note that the functions p�p2, and t are objective functions of type

(1.2.1) in some generalized QAP (see 1.2). Indeed, to obtain p we choose ciiii = 1 for
all i = 1� 
 
 
 � n to be the only nonzero entries of C. To obtain p2, we choose c

ij
ij = 1

for 1 ≤ i� j ≤ n to be the only nonzero entries of C. To obtain t, we choose c
ij
ji = 1 for

all 1 ≤ i < j ≤ n to be the only nonzero entries of C. Consequently, the characters 4n,
4n−1�1, 4n−2�2, and 4n−2�1�1 are objective functions of type (1.2.1).

8. The bullseye case: Proofs. In this section, we prove Theorem 2.1 and Theorem 2.3.
The proof is based on the observation that A satisfies the conditions of §2 if and only if
A ∈ Ln+Ln−2�2 (see §7).
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Proof of Theorem 2.1. Without loss of generality, we may assume that the maximum
of f0��� is attained at the identity permutation " (see Remark 6.2). Excluding the nonin-
teresting case of f0 ≡ 0, by scaling f , if necessary, we can assume that f0�"�= 1. Let g be
the central projection of f0. Then, by Parts (2) and (3) of Lemma 6.4, we have 
g = 0 and
1 = g�"� ≥ g��� for all � ∈ Sn. Moreover, because A ∈ Ln+Ln−2�2, by Parts (1) and (3)
of Proposition 7.5, g must be a linear combination of the constant function 4n and 4n−2�2.
Because 
g = 0, g should be proportional to 4n−2�2, and because g�"�= 1, we have

g = 2
n2−3n

4n−2�2 =
2t+p2−3p
n2−3n

�

Now, � ∈U�"�k� if and only if p���= k. Applying Part (1) of Lemma 6.4 and Lemma 6.7,
we get

1
�U�"�k��

∑
�∈U�"�k�

f0���=
1

�U�"�k��
∑

�∈U�"�k�
g���= k2−3k+��n−k�

n2−3n

and the proof follows. �

Proof of Theorem 2.3. As in the proof of Theorem 2.1, we assume that the maximum
value of f0 is equal to 1.
Let us estimate the cardinality �U���k�� = �U�"�k��. Because � ∈ U�"�k� if and only if

� has k fixed points, to choose a � ∈ U�"�k� one has to choose k points in
(
n

k

)
ways and

then choose a derangement on the remaining n−k points. Using Subsection 6.6.2, we get

�U���k�� ≥
(
n

k

)
�n−k�!/3= n!

3k! �

Applying Lemma 6.5 with % = %�n�k� and X = U���k�, from Theorem 2.1 we conclude
that

P
{
� ∈ Sn� f0���≥ �%�n�k�

} ≥ �1−��%�n�k��U���k��
n!

≥ �1−��%�n�k�

3k! � �

9. The pure case: Proofs. In this section, we prove Theorem 3.1 and Theorem 3.2.
We observe that A satisfies the conditions of §3 if and only if A ∈ Ln+Ln−2�1�1 +Ln−2�2

(see §7). As in §8, the Ln component contributes just a constant to f . Because the Ln−1�1

component attributed to the LAP (see §7.2) is absent, we call this case “pure.”
We choose a more convenient basis g1 and g2 in the vector space spanned by 4n−2�2 and

4n−2�1�1, namely

g1 = 4n−2�2+4n−2�1�1 = p2−3p+1 and g2 = 4n−2�1�1−4n−2�2 = 1−2t�

9.1. Definition. LetKp (where p stands for “pure”) be the set of all functions g� Sn → �
such that g ∈ span�g1� g2�, where g1 = p2−3p+1, g2 = 1−2t, and g�"�≥ g��� for all � ∈ Sn,
where " is the identity permutation. We call Kp the central (pure) cone.
Identifying span�g1� g2� with two-dimensional vector space �2 (plane), we see that the

conditions g�"� ≥ g��� define the central cone Kp as a convex cone in �2. Our goal is to
find the extreme rays r1 and r2 of Kp, so that every function g ∈ Kp can be written as a
nonnegative linear combination of r1 and r2.
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9.2. Lemma. For n≥ 4, let us define the functions r1� r2e, and r2o� Sn → � by

r1 = 1−2t�

r2e =
p2−3p−n−6t+2tn+4

n2−4n+4
� and

r2o =
p2−3p−n−4t+2tn+3

n2−4n+3
�

Then,
(1) If n is even, then Kp is a 2-dimensional convex cone with the extreme rays spanned

by r1 and r2e.
(2) If n is odd, then Kp is a 2-dimensional convex cone with the extreme rays spanned

by r1 and r2o. Cone Kp contains r2e.
(3) If " ∈ Sn is the identity, then

r1�"�= r2e�"�= r2o�"�= 1�

Proof. A function g ∈ Kp can be written as a linear combination g = $1g1 +$2g2.
Because p�"� = n and t�"� = 0, we have g�"� = $1�n

2 − 3n+ 1�+ $2. Therefore, the
inequalities g�"�≥ g��� can be written as

$1�n
2−3n+1�+$2 ≥ $1

(
p2���−3p���+1

)+$2

(
1−2t���

)
�

which, for � �= " is equivalent to

$1

(
n+p���−3

)+$2

2t���
n−p���

≥ 0�

Using Lemma 6.8, we conclude that for even n, the system is equivalent to

$1 ≥ 0�

�n−3�$1+$2 ≥ 0�
(9.2.1)

and for odd n, the system is equivalent to

$1 ≥ 0�

�n−2�$1+$2 ≥ 0�
(9.2.2)

Consequently, every solution �$1�$2� of (9.2.1) is a nonnegative linear combination of
�0�1� and �1�3− n�, and every solution of (9.2.2) is a nonnegative linear combination
of �0�1� and �1�2−n�.
The functions r1� r2e, and r2o are obtained from g2� g1 + �3− n�g2 and g1 + �2− n�g2

respectively by scaling so that the value at the identity becomes equal to 1.
Because every solution of (9.2.1) is a solution of (9.2.2), we conclude that r2e ∈ Kp for

odd n as well. �

9.3. Remark. We observe that r1 has the damped oscillator distribution corresponding
to the case of �1 = 1 in Theorem 3.1, whereas r2e and r2o both have the bullseye distribution
corresponding to the case of �2 = 1 in Theorem 3.1. If n is even, then r2o �Kp; see Figure 5.
Indeed, if � is a product of n/2 commuting 2-cycles, so that p��� = 0 and t��� = n/2,
then r2o���= �n2−3n+3�/�n2−4n+3� > 1= r2o�"�.

Proof of Theorem 3.1. We proceed as in the proof of Theorem 2.1 (§8) with some
modifications. Without loss of generality, we assume that the maximum of f0��� is attained
on the identity permutation " and that f0�"� = 1. Let g be the central projection of f0.
Because A∈Ln+Ln−2�2+Ln−2�1�1, by Parts (1), (3), and (4) of Proposition 7.5, g is a linear



THE DISTRIBUTION OF VALUES IN THE QUADRATIC ASSIGNMENT PROBLEM 83

K K
p p

is even n is odd

r r

r r

r r
2o

1 1

2e

2o

2e

n

Figure 5. The central (pure) cone.

combination of 4n, 4n−2�2, and 4n−2�1�1. By Part (2) of Lemma 6.4, we have 
g = 
f0 = 0, so
g is a linear combination of 4n−2�2 and 4n−2�1�1 alone. Moreover, by Part (3) of Lemma 6.4,
we have 1 = g�"� ≥ g��� for all � ∈ Sn. Hence, g lies in the central cone Kp. Applying
Lemma 9.2, we conclude that g must be a convex combination of r1 and r2e for n even
and a convex combination of r1 and r2o for n odd. Applying Part (1) of Lemma 6.4, we
can replace the average of f0 over the set U�"�k� by the average of g over U�"�k�. The
proof now follows by Lemma 6.7 and the observation that � ∈ U�"�k� if and only if
p���= k. �

To prove Theorem 3.2, we need need one preliminary result.

9.4. Lemma. Let g be a linear combination of g1 = 4n−2�2+4n−2�1�1 = p2−3p+1 and
g2 = 4n−2�1�1−4n−2�2 = 1−2t such that g�"�= 1. For 3≤ k≤ n−1, let �k be a permutation
such that p��k� = k and t��k� = 0, and let 7k be a permutation such that p�7k� = k and
t�7k�= 1. Then,

max�g��k�� g�7k��≥
k2−3k+1
n2−3n+1

�

Proof. Because g�"�= 1, g1�"�= n2−3n+1, and g2�"�= 1, we can write

g = $1

p2−3p+1
n2−3n+1

+$2�1−2t�

for some $1 and $2 such that $1+$2 = 1. Then,

g��k� = $1

k2−3k+1
n2−3n+1

+$2 and

g�7k� = $1

k2−3k+1
n2−3n+1

−$2�

We observe that g��k� and g�7k� are linear functions of $1 and $2, and that for $1 = 1 and
$2 = 0 we have

g��k�= g�7k�=
k2−3k+1
n2−3n+1

�(9.4.1)

Let

81 =
n2−3n+1

2�k2−3k+1�
+ 1

2
and 82 =

n2−3n+1
2�k2−3k+1�

− 1
2
�
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Then, 81�82 > 0 and
81g��k�+82g�7k�= $1+$2 = 1�

Comparing this with (9.4.1) we conclude that there are no values $1 and $2 such that
$1+$2 = 1 and

g��k�� g�7k� <
k2−3k+1
n2−3n+1

� �

Proof of Theorem 3.2. Without loss of generality, we may assume that the maximum
value of f0 is attained at the identity permutation " (see Remark 6.2). Excluding an obvious
case of f0 ≡ 0, by scaling f , if necessary, we may assume that f0�"�= 1. Let g be the central
projection of f0. As in the proof of Theorem 3.1, we deduce that g is a linear combination
of 4n−2�2 and 4n−2�1�1, and hence a linear combination of g1 and g2, and that g�"�= 1.
Let us choose 3≤ k ≤ n−3 and let Xk be the set of permutations � such that p���= k

and t��� = 0, and let Yk be the set of permutations 7 such that p�7� = k and t�7� = 1.
To choose a permutation � ∈ Xk, one has to choose k fixed points in

(
n

k

)
ways and then a

derangement without 2-cycles on the remaining �n−k� points. Then, by (6.6.2),

�Xk� ≥
1
5

(
n

k

)
�n−k�! = 1

5
n!
k! �

Similarly, to choose a permutation 7 ∈ Yk, one has to choose a 2-cycle in
(
n

2

)
ways k fixed

points in
(
n−2
k

)
ways, and a derangement without 2-cycles on the remaining �n− k− 2�

points. Then, by (6.6.2),

�Yk� ≥
1
5

(
n

2

)(
n−2
k

)
�n−k−2�! = n!

10k! �

Let us choose a permutation � ∈Xk and a permutation 7 ∈ Yk, and let Z=Xk if g���≥ g�7�
and Z = Yk otherwise. Then,

�Z� ≥ n!
10k!

and by Lemma 9.4,

g���≥ k2−3k+1
n2−3n+1

for all � ∈ Z�

The set Z is a disjoint union of some conjugacy classes X�0� and for each X�0� by (6.6.1),
we have

g�0�= 1
�X�0��

∑
�∈X�0�

f0���≥
k2−3k+1
n2−3n+1

and hence
1
�Z�

∑
�∈Z

f0���≥
k2−3k+1
n2−3n+1

�

Applying Lemma 6.5 with X = Z and %= %�n�k�, we get that

P
{
� ∈ Sn � f0���≥ �%�n�k�

}≥ �1−��%�n�k�

10k! � �

To obtain Corollary 3.3 from Theorem 3.2, we fix any � ∈ �0�1� (say � = 1/2) and
choose k = O�

√
$� in Part (1), and k = O�n1−*/2� in Part (2).

9.5. Remark. It follows from the proof that we are able to choose the required number
of “good” permutations among the permutations whose distance to the optimal permutation
� is n−k.
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10. The symmetric case: Proofs. In this case, A ∈ Ln+Ln−1�1+Ln−2�2 (see §7). As in
§§8 and 9, the Ln component contributes just a constant to f . We choose a more convenient
basis g1 and g2 in the vector space spanned by 4n−1�1 and 4n−2�2, namely

g1 = 4n−1�1 = p−1 and g2 = 24n−2�2+34n−1�1 = p2+2t−3�

where p��� is the number of fixed points of � and t��� is the number of 2-cycles in � .
10.1. Definition. Let Ks (where s stands for “symmetric”) be the set of all functions

g� Sn → � such that g ∈ span�g1� g2�, where g1 = p−1, g2 = p2+2t−3, and g�"�≥ g���
for all � ∈ Sn, where " is the identity permutation. We call Ks the central (symmetric) cone.
Identifying span�g1� g2� with 2-dimensional vector space �2 (plane), we see that the

conditions g�"� ≥ g��� define the central cone Ks as a convex cone in �2. Our goal is to
find the extreme rays r1 and r2 of Ks , so that every function g ∈ Ks can be written as a
nonnegative linear combination of r1 and r2.

10.2. Lemma. For n≥ 4, let us define the functions r1� r2e, and r2o� Sn → � by

r1 =
2np−2n−p2−3p−2t+6

n2−5n+6
�

r2e =
−np+n+p2+p+2t−4

2n−4
� and

r2o =
−n2p+np2+n2+np+2nt−4n−3p+3

2n2−7n+3
�

Then,
(1) If n is even, then Ks is a 2-dimensional convex cone with the extreme rays spanned

by r1 and r2e.
(2) If n is odd, then Ks is a 2-dimensional convex cone with the extreme rays spanned

by r1 and r2o. Cone Ks contains r2e.
(3) If " ∈ Sn is the identity, then

r1�"�= r2e�"�= r2o�"�= 1�

Proof. A function g ∈ Ks can be written as a linear combination g = $1g1 +$2g2.
Because p�"� = n and t�"� = 0, we have g�"� = $1�n− 1�+$2�n

2 − 3�. Therefore, the
inequalities g�"�≥ g��� can be written as

$1�n−1�+$2�n
2−3�≥ $1

(
p���−1

)+$2

(
p2���+2t���−3

)
�

which, for � �= ", is equivalent to

$1+$2

(
n+p���− 2t���

n−p���

)
≥ 0�(10.2.1)

Applying Lemma 6.8, we observe that (10.2.1) is equivalent to the system of two
inequalities:

$1+ �2n−3�$2 ≥ 0

and

$1+ �n−1�$2 ≥ 0 if n is even�

n$1+ �n2−n+3�$2 ≥ 0 if n is odd�

Thus, every pair �$1�$2� satisfying (10.2.1) can be written as a nonnegative linear combi-
nation of �2n−3�−1� and �1−n�1� when n is even, and �2n−3�−1� and �−n2+n−3� n�
when n is odd.
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The generators r1� r2e, and r2o are obtained from �2n− 3�g1 − g2, �1− n�g1 + g2, and
�−n2 + n− 3�g1 + ng2, respectively by scaling so that the value at the identity becomes
equal to 1.
It remains to check that r2e ∈Ks for n odd as well. Indeed, using that 2t+p≤ n we have

�2n−4�
(
r2e−1

) = −n�p−1�+p�p+1�+2t−4−2n+4

= −n�p+1�+p�p+1�+2t

≤ �p+1��−n+p�+n−p = p�−n+p�≤ 0� �

10.3. Remark. We observe that r1 has the bullseye distribution corresponding to the
case of �1 = 1 in Theorem 4.1, whereas r2e and r2o both have the spike distribution cor-
responding to the case of �2 = 1 in Theorem 4.1. One can observe that if n is even,
then r2o � Ks . Indeed, if � is a product of n/2 commuting 2-cycles, then r2o��� =
�2n2−4n+3�/�2n2−7n+3� > 1. The picture of Ks is very similar to that of Kp (see §9,
Figure 5).

Proof of Theorem 4.1. The proof is completely similar to the proof of Theorem 3.1
(see §9). We use Lemma 10.2 instead of Lemma 9.2. �

To prove Theorem 4.3, we need one preliminary result.

10.4. Lemma. Let g be a linear combination of g1 = 4n−1�1 = p−1 and g2 = 24n−2�2+
34n−1�1 = p2+2t−3 such that g�"�= 1. For 3 ≤ k ≤ n−3, let �k be a permutation such
that p��k�= k, t��k�= 0, and let <k be a permutation such that p�<k�= 0 and t�<k�= k.
Then,

max
{
g��k�� g�<k�

}≥ 3k−5
n2−kn+k+2n−5

�

Proof. We can write

g = $1

p−1
n−1

+$2

p2+2t−3
n2−3

for some $1 and $2 such that $1+$2 = 1. Then,

g��k� = $1

k−1
n−1

+$2

k2−3
n2−3

and

g�<k� = −$1

1
n−1

+$2

2k−3
n2−3

�

We observe g��k� and g�<k� are linear functions of $1 and $2 and that for

$1 =
kn−k−2n+2

−n2+kn−k−2n+5
and $2 =

3−n2

−n2+kn−k−2n+5

we have

g��k�= g�<k�=
3k−5

n2−kn+k+2n−5
and $1+$2 = 1�(10.4.1)

Let

81 =
n2+2kn−3n−2k

k�3k−5�
and 82 =

kn2−k2n−n2+k2+3n−3k
k�3k−5�

�

Then, 81�82 > 0 and
81g��k�+82g�<k�= $1+$2 = 1�

Comparing this with (10.4.1), we conclude that there are no values $1�$2 such that $1+
$2 = 1 and

g��k�� g�<k� <
3k−5

n2−kn+k+2n−5
� �
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Proof of Theorem 4.3. The proof is similar to that of Theorem 3.2 (see §9). Without
loss of generality, we assume that the maximum value of f0 is 1 and is attained at the
identity permutation ". Let g be the central projection of f0. We deduce that g is a linear
combination of 4n−1�1 and 4n−2�2, and hence a linear combination of g1 and g2, and that
g�"� = 1. Let us choose 3 ≤ k ≤ n− 3 and let Xk be the set of permutations � such that
p��� = k and t��� = 0, and let Yk be the set of permutations < such that p�<� = 0 and
t�<�= k. As in the proof of Theorem 3.2, we have

�Xk� ≥
1
5
n!
k! �

To choose a permutation < ∈ Yk, one has to choose k 2-cycles in n!/��n−2k�!k!2k� ways
and a derangement without 2-cycles on the remaining n−2k points. Hence, by (6.6.2),

�Yk� ≥
1
5

n!
k!2k �

Let us choose a permutation � ∈Xk and a permutation < ∈ Yk and let Z=Xk if g���≥ g�<�
and let Z = Yk otherwise. Then,

�Z� ≥ n!
5k!2k

and by Lemma 10.4,

g���≥ 3k−5
n2−kn+k+2n−5

for all � ∈ Z�

The proof now proceeds as in the proof of Theorem 3.2, (§9). �

11. The general case: Proofs. Let us choose a convenient basis in span�4n−1�1�4n−2�2�
4n−2�1�1�:

g1 = 4n−1�1 = p−1� g2 = 4n−2�2+4n−2�1�1+34n−1�1 = p2−2� and

g3 = 4n−2�1�1−4n−2�2 = 1−2t�

11.1. Definition. Let K be the set of all functions g ∈ span�g1� g2� g3� such that g�"�≥
g��� for all � ∈ Sn. We call K the central cone.
Identifying span�g1� g2� g3� with a 3-dimensional vector space �3, we see that conditions

g�"� ≥ g��� define the central cone K as a convex polyhedral cone in �3. The condition
g�"� = 1 defines a plane H in �3 and the intersection B = H ∩K is a base of K, that is,
a polygon such that every g ∈ K can be uniquely represented in the form g = 8h for some
h ∈ B.
Our goal is to determine the structure of K. This is somewhat more complicated than in

the 2-dimensional situations of §§9 and 10.

11.2. Lemma. Let us define functions

r1 =
−np+n+p2−2

n−2
�

r2 = 1−2t�

r3 =
2np−3p−2n−p2−2t+6

n2−5n+6
�

r4 =
p+2t−2
n−2

� and

r5o =
−2np+3p2−3p+2tn+n−3

n2−2n−3
�



88 A. BARVINOK AND T. STEPHEN

Then,
(1) If " ∈ Sn is the identity, then

r1�"�= r2�"�= r3�"�= r4�"�= r5o�"�= 1�

(2) If n is even, then r1� r2� r3, and r4 are the vertices (in consecutive order) of the planar
quadrilateral B = conv�r1� r2� r3� r4� that is a base of the central cone K.

(3) If n is odd, then r1� r2� r3� r4, and r5o are the vertices (in consecutive order) of the
planar pentagon B = conv�r1� r2� r3� r4� r5o� that is a base of the central cone K.

Proof. A function g ∈ span�g1� g2� g3� can be written as a linear combination g=$1g1+
$2g2+$3g3. Then, g�"�= $1�n−1�+$2�n

2−2�−$3 and the conditions g�"�≥ g��� are
written as

$1�n−1�+$2�n
2−2�+$3 ≥ $1

(
p���−1

)+$2

(
p2���−2

)+$3

(
1−2t���

)
�

which for � �= " are equivalent to

$1+$2

(
n+p���

)+$3

2t���
n−p���

≥ 0�

Applying Lemma 6.8, we see that for even n, the system is equivalent to

$1+n$2 ≥ 0�

$1+ �2n−3�$2 ≥ 0�

$1+ �2n−2�$2+$3 ≥ 0�
$1+n$2+$3 ≥ 0�

(11.2.1)

whereas for odd n, the system is equivalent to

$1+n$2 ≥ 0�

$1+ �2n−3�$2 ≥ 0�

$1+ �2n−2�$2+$3 ≥ 0�

$1+ �n+1�$2+$3 ≥ 0�

n$1+n2$2+ �n−3�$3 ≥ 0�

(11.2.2)

The set of all feasible 3-tuples �$1�$2�$3� is a polyhedral cone, which, for even n, has at
most 4 extreme rays and for odd n has at most 5 extreme rays. We call an inequality of
(11.2.1)–(11.2.2) active on a particular tuple if it holds with equality.
It is readily verified that for even n the following tuples span the extreme rays of the set

of solutions to (11.2.1):

�−n�1�0� 4th and 1st inequalities are active�

�0�0�1� 1st and 2nd inequalities are active�

�2n−3�−1�1� 2nd and 3rd inequalities are active�

�1�0�−1� 3rd and 4th inequalities are active�

and that for odd n the following tuples span the extreme rays of the set of solutions to
(11.2.1):

�−n�1�0� 5th and 1st inequalities are active�

�0�0�1� 1st and 2nd inequalities are active�

�2n−3�−1�1� 2nd and 3rd inequalities are active�

�1�0�−1� 3rd and 4th inequalities are active�

�−2n−3�3�−n� 4th and 5th inequalities are active�
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Figure 6. The base of the central cone.

We obtain r1� r2� r3� r4, and r5o by scaling the corresponding linear combinations $1g1 +
$2g2+$3g3 so that the value at the identity is equal to 1, and hence r1� r2� r3� r4, and r5o lie
on the same plane in span�g1� g2� g3�. �

11.3. Remark. We observe that r1 and r5o have spike distributions (in particular, r1 has
the “sharp spike” distribution of §5.2) corresponding to the cases of �1 = 1 and �5 = 1,
respectively, in Theorem 5.1; that r2 has the damped oscillator distribution corresponding
to the case of �2 = 1; and that r3 and r4 have bullseye distributions corresponding to
the cases of �3 = 1 and �4 = 1, respectively. If n is even, then r5o � K, for if � is a
product of n/2 commuting 2-cycles, so that p��� = 0 and t��� = n/2, then r5o��� =
�n2+n−3�/�n2−2n−3� > 1= r5o�"�; see Figure 6.
We observe that function r3 coincides with function r1 of Lemma 10.2 (the symmetric

QAP), and that function r2 coincides with function r1 of Lemma 9.2 (the pure QAP).
Proof of Theorem 5.1. The proof is completely similar to the proof of Theorem 3.1

(see §9). We use Lemma 11.2 instead of Lemma 9.2. �

To prove Theorem 5.2, we need one preliminary result.

11.4. Lemma. Let g be a linear combination of g1 = p−1, g2 = p2−2, and g3 = 1−2t
such that g�"� = 1. For 2 ≤ k ≤ n− 2, let �k be a permutation such that p��k� = k and
t��k�= 0, let < be a permutation such that p�<�= 0 and t�<�= 1, and let 7 be permutation
such that p�7�= t�7�= 0. Then

max
{
g��k�� g�<�� g�7�

}≥ k−2
n2−kn+k−2

�

Proof. We can write

g = $1

p−1
n−1

+$2

p2−2
n2−2

+$3�1−2t�

for some $1�$2, and $3 such that $1+$2+$3 = 1. Then,

g��k� = $1

k−1
n−1

+$2

k2−2
n2−2

+$3�

g�<� = − $1

n−1
−$2

2
n2−2

−$3�

g�7� = − $1

n−1
−$2

2
n2−2

+$3�

We observe that g��k�, g�<�, and g�7� are linear functions of $1�$2, and $3 and that for

$1 =
k�1−n�

n2−nk+k−2
� $2 =

n2−2
n2−nk+k−2

� and $3 = 0
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we have

g��k�= g�<�= g�7�= k−2
n2−nk+k−2

and $1+$2+$3 = 1�(11.4.1)

Let

81 =
n2−2n
k2−2k

� 82 =
n2−nk

2k−4
� and 83 =

n2−kn−2n+2k
2k

�

Then, 81�82�83 > 0 and

81g��k�+82g�<�+83g�7�= $1+$2+$3 = 1�

Comparing this with (11.4.1), we conclude that there are no values $1�$2, and $3 such that
$1+$2+$3 = 1 and

g��k�� g�<�� g�7� <
k−2

n2−nk+k−2
� �

Proof of Theorem 5.2. The proof follows those of Theorem 3.2 (see §9) and Theo-
rem 4.3 (see §10) with some modifications. Let Xk be the set of all permutations � such
that p���= k and t���= 0. As in the proof of Theorem 3.2, we have

�Xk� ≥
1
5
n!
k! �

Let Y be the set of all permutations � such that p���= 0 and t���= 1. To choose a per-
mutation � ∈ Y , one has to choose a 2-cycle in

(
n

2

)
ways and then an arbitrary derangement

on the remaining �n−2� symbols without 2-cycles. Using (6.6.2), we estimate

�Y � ≥ 1
5

n!
2�n−2�! �n−2�! = 1

10
n!�

Let us choose a permutation �k ∈ Xk, a permutation < ∈ Y , and a permutation 7 ∈ X0. Let
us choose Z to be one of Xk, X0, and Y , depending where the maximum value of g��k�,
g�<�, or g�7� is attained. Hence,

�Z� ≥ n!
5k!

and by Lemma 11.4,

g���≥ k−2
n2−kn+k−2

for all � ∈ Z�

We proceed now as in the proof of Theorem 3.2, (see §9). �

To obtain Corollary 5.4, we choose � = 1/2 and k = O�$� in Part (1), and � = 1/2 and
k = O�n1−*� in Part (2).

12. Concluding remarks and open questions. The estimates of Theorems 2.3, 3.2,
4.3, and 5.3 for the number of near-optimal permutations can be used to bound the optimal
value by a sample optimum in branch-and-bound algorithms. Those estimates are (nearly)
best possible for the generalized problem (1.2). However, it is not clear whether they can
be improved in the case of standard QAP (see 1.1) or how to improve them in interesting
special cases. In particular, we ask the following:
• Question: Let f � Sn → � be the objective function in the TSP (cf. §§2 and 3), let


f be the average value of f , and let f0 = f − 
f . Let � be an optimal permutation, so
that f0��� ≥ f0��� for all � ∈ Sn. Is it true that for any fixed � > 0 there is a number
( = (��� > 0 such that the probability that a random permutation � ∈ Sn satisfies the
inequality f0���≥ ��/n�f0��� is at least n

−( for all sufficiently large n?
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Barvinok (2002) showed that this is indeed the case for an arbitrary QAP (see 1.1)
provided f0 is replaced by its absolute value �f0�.
As well as finding improved approximation algorithms, it would be very interesting to

find corresponding hardness results with an ultimate goal of proving sharp bounds. No
hardness of approximation results with respect to the average are known.
Another question is whether approximations can be obtained deterministically. The ran-

dom sampling algorithm in the “bullseye” case of §2 can be relatively easily derandomized.
Whether the same is true for algorithms of §§3–5 is not clear at the moment.
Our methods can be applied to study the distribution of values in the assignment problems

of higher order and their special cases, such as the Weighted Hypergraph Matching Problem.
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