Flushing Boards

Brian Alspach

17 November 1998

Abstract

We determine the probability of a board occurring which allows the possibility of a flush where a board is 5 cards from a standard deck of 52 cards. The result applies to both hold'em and Omaha when no further knowledge about players' hands is available.

In hold'em or Omaha, where 5 cards are displayed in the middle for everyone to use in her or his hand, we refer to the 5 cards in the middle as the board. In order for some player to be able to make a flush, there must be at least 3 cards in the same suit in the board. We shall call such a board a flushing board. We are interested in determining the probability of having a flushing board in the case none of the players' cards are known.

The total number of possible boards is

$$
\binom{52}{5}=\frac{52!}{5!47!}=2,598,960
$$

Let's express the type of suit distribution of the board as a vector with 4 coordinates. The possible types are $(0,0,0,5),(0,0,1,4),(0,0,2,3),(0,1,1,3),(0,1,2,2)$, and $(1,1,1,2)$. For example, the type $(0,0,0,5)$ indicates the board is made up of 5 cards in the same suit. It is easy to see the first 4 types describe flushing boards and the last 2 types describe boards which are not flushing.

The type (0,0,0,5). There are 4 choices for the suit in the board and $\binom{13}{5}=$ 1,287 choices for the 5 cards of that suit. This yields $4 \cdot 1,287=5,148$ boards of type $(0,0,0,5)$.

The type ($\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{4}$). There are 4 choices for the suit with 4 cards in the board, 3 choices for the remaining suit, $\binom{13}{4}=715$ choices for the 4 cards of the one suit, and 13 choices for the card in the other suit. This yields $4 \cdot 3 \cdot 715 \cdot 13=111,540$ boards whose type is $(0,0,1,4)$.

The type $(\mathbf{0}, \mathbf{0}, \mathbf{2}, \mathbf{3})$. There are 4 choices for the suit with 3 cards, 3 choices for the suit with 2 cards, $\binom{13}{3}=286$ choices for the 3 cards of the one suit, and $\binom{13}{2}=78$ choices for the 2 cards of the other suit. This produces $4 \cdot 3 \cdot 286 \cdot 78=267,696$ boards of type $(0,0,2,3)$.

The type $(\mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{3})$. There are 4 choices for the suit with 3 cards, 3 choices for the 2 remaining suits, $\binom{13}{3}=286$ choices for the 3 cards of the one suit, and 13 choices for each of the cards of the other 2 suits. This gives us $4 \cdot 3 \cdot 286 \cdot 13^{2}=580,008$ boards of type $(0,1,1,3)$.

The type $(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{2})$. There are 4 choices for the suit with 1 card, $\binom{3}{2}=3$ choices for the suits with 2 cards apiece, 13 choices for the card from the first suit, and $\binom{13}{2}=78$ choices for the 2 cards of each suit. This produces $4 \cdot 3 \cdot 13 \cdot 78^{2}=949,104$ boards of type $(0,1,2,2)$.

The type (1,1,1,2). There are 4 choices for the suit with 2 cards of that suit, $\binom{13}{2}=78$ choices for the card of that suit, and 13 choices for each of the other cards. This yields $4 \cdot 78 \cdot 13^{3}=685,464$ boards of type $(1,1,1,2)$.

Adding the numbers of boards of the six types yields $2,598,960$ boards as it should.

Boards of types $(0,0,0,5),(0,0,1,4),(0,0,2,3)$, and $(0,1,1,3)$ are flushing boards. The number of boards of these types is the sum

$$
5,148+111,540+267,696+580,008=964,392
$$

This means the probability of a flushing board occurring given no further information is

$$
\frac{964,392}{2,598,960}=0.371
$$

So a flushing board occurs at the rate of about 3 out of every 8 hands.

