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Dedicated to the memory of my father.

Summary. An explicit convergent finite difference scheme for motion of
level sets by mean curvature is presented. The scheme is defined on a carte-
sian grid, using neighbors arranged approximately in a circle. The accuracy
of the scheme, which depends on the radius of the circle, dx, and on the
angular resolution, dθ , is formally O(dx2 + dθ). The scheme is explicit
and nonlinear: the update involves computing the median of the values at
the neighboring grid points. Numerical results suggest that despite the low
accuracy, acceptable results are achieved for small stencil sizes. A numerical
example is presented which shows that the centered difference scheme is
non-convergent.

Mathematics Suject Classification (2000): 35K65, 35K55, 65M06, 65M12

1 Introduction

There has been a great deal of interest in motion by mean curvature, in terms
of both theory and computation. The level set method has been successful
both as a framework for the theoretical study and as a numerical method for
the simulation of the motion. Applications of motion by mean curvature, and
of related geometric motions, can be found in many areas, including differen-
tial geometry, fluid dynamics, combustion, front propagation [Set99,OF03]
and image processing [OP03].

� The author would like to thank P.E. Souganidis for valuable discussions, and the Uni-
versity of Texas at Austin for its hospitality during the course of this work.
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Despite the great deal of interest, no practical, provably convergent numer-
ical scheme has been proposed for the equation for motion of level sets by
mean curvature.

The equation for motion of level sets by mean curvature in R
n is given by

ut = �1u ≡ |Du| div

(
Du

|Du|
)

≡
n∑
i=1

uxixi − 1

|Du|2
n∑

i,j=1

uxixj uxi uxj .

(MC)

This equation arises from the well-known level set method, which gives the
normal velocity, vn, of the level set of the function u(x) as vn = ut/|Du|.The
unit normal of the level set is given by the direction of the gradient,Du/|Du|,
and the mean curvature is the divergence of the unit normal, resulting in (MC).

In two dimensions, the spatial operator�1 can be rewritten in a suggestive
form. Writing n = (ux, uy)/|Du| and t = n⊥ for the unit normal and unit
tangent, respectively, gives

�1u = 1

|Du|2
(
u2
yuxx − 2uxuyuxy + u2

xuyy
) = ∂2u

∂t2
.

Generalizing this observation to higher dimensions, the spatial operator �1

can be regarded as the (n−1)-dimensional Laplacian restricted to the tangent
space of the graph of the level set of the function u.

Previous work A numerical method for the motion of level sets by mean cur-
vature appeared in [OS88]. Each level set of the partial differential equation
(MC) moves with velocity proportional to the mean curvature. Existence
and uniqueness of viscosity solutions to (MC) was proven by [ES91] and
[CGG91]. Motion (of one level set) by mean curvature also arises as the sin-
gular limit of a semilinear reaction diffusion equation. This approach leads to
indirect numerical methods [BG95], [ESS92]. The Bence-Merriman-Osher
scheme [MBO94], which can be viewed as the singular limit of the reaction
diffusion equation, consists of solving the heat equation, followed by thres-
holding. Finite element schemes which solve (MC) directly have been built
[Wal96], but the theory in this case does not ensure uniqueness of solutions.
A class of difference schemes for quasilinear PDE, including motion by mean
curvature, was presented in Crandall and Lions [CL96]. The schemes are not
practical, since they require using a very large stencil.
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1.1 Viscosity solutions

The theory of viscosity solutions is a powerful tool for proving existence
and uniqueness results for a wide class of nonlinear scalar partial differen-
tial equations. While the theory has a historical connection to the method of
vanishing viscosity, the two should not be confused.

Without going into needless technical detail, we highlight parts of the
theory which provide relevant background material to this work. For further
details, we refer the interested reader to the following references.An introduc-
tion to viscosity solutions for Hamilton-Jacobi equations and optimal control
can be found in Chapter 10 of [Eva98]. A more extensive introductory work
is [Cra97], which contains exercises for the reader. The standard reference is
[CIL92], which includes a survey of the range of equations covered by the
theory (pages 4-9).

Viscosity solutions apply to nonlinear elliptic equations of the form
F(x, u,Du,D2u) = 0, or nonlinear parabolic equations of the form ut =
F(x, u,Du,D2u). The entire class of equations covered by theory, which
includes (MC), is called degenerate elliptic, a term which includes both the
elliptic and parabolic case.

The theory allows for non-smooth solutions. In practice we often can
work with continuous functions, while treating them as if they were smooth.
This is a consequence of the definition of viscosity solutions, which involves
touching candidate solutions from above or below by a smooth test function,
and using the derivatives of the test function in the equation.

An important property which holds for solutions of degenerate elliptic
equations is the comparison principle. A generalization of the maximum
principle, the comparison principle says that if u and v are solutions of a
degenerate elliptic equation, and if u ≤ v on the boundary of the domain,
then u ≤ v in the entire domain. In particular for parabolic equations: if
u ≤ v initially and on the boundary, then u ≤ v for all time.

Another important property is the stability of solutions under perturba-
tions. Roughly speaking, this property says that solutions of perturbed equa-
tions converge pointwise to solutions of the unperturbed equation, provided
that each of the equations under consideration is degenerate elliptic. The
example which motivated the theory, and from which the name viscosity
solutions is derived, is to add a vanishing amount of the Laplacian. The notion
of perturbation is very broad, and includes finite difference approximations
[BS91].

While the theory of viscosity solutions is a powerful tool for proving
existence and uniqueness results, regularity of solutions must be addressed
by other means. Regularity results for the underlying equation impinge on
the possible accuracy of solution methods. For difference methods which
typically rely on Taylor series expansions for consistency, the accuracy of
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the method is limited by the smoothness of solutions. Consequently, while
formal accuracy estimates may obtained by routine methods for numerical
schemes, proving these estimates is generally more difficult, and may require
a recapitulation of the regularity proof.

1.2 Convergence of difference schemes

The approximation theory set out in [BS91] applied to a broad class of differ-
ence schemes. In this section we sacrifice generality for the sake of clarity
and describe those parts of the convergence theory which apply to difference
schemes.

The properties needed for convergence are the following: monotonic-
ity, consistency, and stability. It bears mentioning that there is no accuracy
requirement for convergence. For difference schemes, simple conditions for
monotonicity can be derived [Obe05], and in a restricted context, the stability
requirement, which is quite weak, follows.

Monotonicity Monotonicity for difference schemes is a discrete version of
the comparison principle. Monotonicity is the requirement that if u, v are
solutions of a scheme with boundary data g, h, respectively, then g ≤ h (on
the boundary) implies u ≤ v (on the entire domain). For one-step parabolic
schemes the conditions simplifies to the following.

Definition 1 (Monotonicity) The explicit finite difference scheme is mono-
tone provided that the value of the solution at the next time step is a nonde-
creasing function of the values at the previous step.

This condition is simple to check at each grid point. For example, the explicit
Euler method for the heat equation gives

un+1
j = (1 − λ)unj + λ(unj−1 + unj+1)/2,

where λ = 2 dt/dx2. The value un+1
j is given explicitly in terms of values

at the previous time step. It is a non-decreasing function of these values pro-
vided 0 ≤ λ ≤ 1. In this case the condition for monotonicity coincides with
the usual Courant-Freidrichs-Lewy (CFL) condition. The reader may verify
that the implicit Euler discretization is monotone for any positive value of λ.

Consistency The substantial part of the consistency requirement for differ-
ence schemes is a verification of consistency by the usual method of Taylor
expansions. While solutions need not be smooth, the theory requires that we
check consistency only for smooth functions. However care must be taken
in the definition of consistency at points where the PDE is singular, as when
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Du = 0 in (MC). Nevertheless, at singular points, the requirements are
weaker, so these points will not usually pose additional difficulties.

We define consistency in the interior of the domain as follows.

Definition 2 (Consistency) The numerical scheme Fdx,dθ is consistent with
(MC) if for every smooth function φ, and for every x, t > 0

lim
dx,dθ→0

Fdx,dθ (φ) = φt −�1φ(1)

at (x, t) if Dφ(x, t) �= 0, and

φt + λ ≤ lim inf
dx,dθ→0

Fdx,dθ (φ) ≤ lim sup
dx,dθ→0

Fdx,dθ (φ) ≤ φt +�(2)

at (x, t), where λ,� are the least and greatest eigenvalues, respectively,
of −D2φ(x, t), otherwise.

Stability The stability requirement is satisfied if the numerical solutions are
bounded uniformly in time. This requirement follows from the (discrete)
comparison principle: numerical solutions are bounded by the maximum and
minimum of the initial values.

1.3 Non-convergence of the centered difference scheme

An obvious approach to building a difference scheme for (MC) is to simply
combine centered finite differences for each of the terms in the equation. We
present a numerical experiment which demonstrates that this approach is not
convergent.

Discretization The example uses a nine point stencil on a uniform grid, with
centered differences for the ux, uy, uxx, and uyy terms, and the symmetric
discretization (alternating signs at the stencil points (±dx,±dx)) for the uxy
term.

Boundary conditions The function sin(2π(x − y)), which is a steady solu-
tion of (MC), is used as initial data on the unit square with periodic boundary
conditions.

Results The monotone scheme was exact, leaving the solution unchanged
to within numerical precision. Using the centered difference scheme, the
solution contracted rapidly, tending towards a constant. On a 32 × 32 grid
after a time of 0.05 the oscillation of the function decreased by a factor of
approximately 65. On a 128 × 128 grid after the same time the factor was
approximately 400.
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Remark 1 While one particular choice of discretization was made, we claim
that the behavior is universal amongst these types of schemes for the follow-
ing reason. Nine point schemes will generically use information from each
of the neighbors, while the geometry of the equation dictates that only infor-
mation from grid points along a particular direction (the tangent direction)
should be used.

Remark 2 Another scheme for (MC) is to compute the gradient using nearby
data, and then compute the second derivative in a direction determined by
the gradient. This method is not monotone: increasing the values at the grid
points used to compute the gradient will change the resulting direction, and
the resulting value of the second derivative may decrease.

1.4 Outline of the monotone scheme

The monotone scheme uses as neighbors lattice points chosen to be close
to a uniform arrangement about a circle. Computing the spatial operator is
simple:�1u = 2(u(x)− u∗)/dx2 +O(dx2 + dθ), where dx is the radius of
the circle, dθ is the maximum angle in radians between points on the circle,
u(x) is the value at the center of circle, and u∗ is the median of the values
of the neighbors. The time discretization is simply explicit Euler, with time
step dt restricted by the nonlinear CFL condition dt ≤ dx2/2.

In order for the scheme to converge, both dx, and dθ must go to zero,
although they may do so independently. Call the discretization parameter,
dθ , the directional resolution. Increasing the directional resolution is accom-
plished by enlarging the number of neighboring grid points used in the cal-
culation. Define nθ to be the width of the stencil and nS to be the number of
neighbors used.

Remark 3 The need for a larger stencil is supported by [MW53], which shows
that for a fixed grid, it is possible to find linear elliptic PDEs for which no
monotone, second order accurate discretization exists. Although the proof is
non-constructive, a simple example with this property is the second derivative
in a direction with an irrational slope [CL96].

However this negative result can be misleading, since it places too much
emphasis on the accuracy condition. Addressing the example, the line with
irrational slope comes arbitrarily close to a lattice point, and using a nearby
lattice point gives a valid (but less accurate) representation of the operator.
For this reason, we introduce another parameter, dθ , to represent the direc-
tional resolution of a choice of neighbors. In fact, with sufficient resolution
in dx, dθ , monotone discretizations of linear elliptic operators can be found,
accurate to O(dx2 + dθ).
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1.5 The scheme in its simplest form

In this section we present the simplest version of the scheme. Despite its
limited accuracy, this version of the scheme may be of practical use. A pos-
siblility is in applications to image processing, where the data itself has a
natural discrete structure.

This version of scheme is presented with an arbitrary spatial resolution,
dx, but with a nine point stencil. This fixes the directional resolution, dθ , to
be 2π/8. Setting the time step dt = dx2/2, (the largest possible for stability)
gives the following scheme.

1. Sort the values of the eight nearest neighbors, u1 ≤ · · · ≤ u8.
2. Compute the median, u∗ = (u4 + u5)/2.
3. Replace the current value by the median, u(x, y, t + dt) = u∗(x, y, t).
4. Iterate.

The scheme is monotone: increasing any of the neighboring values will lead
to an increase (or no change) in the value of the solution.

Accuracy: given data from a twice differentiable function, the scheme
computes two derivatives (with accuracy O(dx2)) in the grid direction clos-
est to the direction of the tangent of the level set. For the current scheme, the
directions vectors are in the axial and the diagonal directions. The nine-point
scheme computes one of uxx , uyy , and uxx ± 2uxy + uyy .

2 Presentation and convergence proof of the scheme

In this section we present the scheme. The scheme can be implemented in
general (structured, unstructured) geometries, in two or more dimensions. For
concreteness, we first address the scheme on a uniform grid in two dimen-
sions. In this context, a detailed convergence proof is given. The requirements
for the choice of neighbors specified so that the scheme may easily be adapted
to an unstructured grid. The extension to higher dimensions is then addressed.

2.1 The scheme in two dimensions

We begin with the spatial operator and suppress the time dependence. The
scheme is defined in the interior of the domain. The uniform grid depends on
two parameters: dx, and nθ . The spatial resolution is dx, which should not
be confused with the lattice spacing, defined to be dx/nθ .

Define the scheme at each point in terms of the reference point (x0, y0),
and the nS neighbors at (x1, y1), . . . , (xnS , ynS ). The values of the solution
at point (xi, yi) are denoted ui . The direction vectors at (x0, y0) are the unit
vectors, vi , in the direction of (xi, yi)− (x0, y0), i = 1, . . . , nS .
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We begin by specifying the neighbors, which are distributed on lattice
points near the circle of radius dx. This is followed by defining the spatial
discretization in terms of the values at the neighbors. Then the explicit Euler
method is used for the time step.

Finally monotonicity and consistency of the resulting scheme is estab-
lished.

A choice of lattice points near the circle of radius dx. The scheme requires
that the neighbors be located close to a uniform distribution about a circle of
radius dx. For the purposes of the convergence proof, we specify a choice of
points for arbitrarily small dθ . In practice, relatively few neighbors may be
used, and they may be chosen by hand. Particular choices of neighbors are
specified in the final section.

The number of neighbors to be chosen in the stencil is nS = 4�πnθ/4�.
(Here the “floor” operator �x� denotes the greatest integer less than x.) Let
dθ = 2π/nS . Choose the neighbors in the first quadrant as follows,

(xi, yi) = dx

(
1

nθ
�nθ cos(i dθ)�, 1

nθ
�nθ sin(i dθ)�

)
,(3)

for i = 0, . . . ,
(
nS
4 − 1

)
then rotate the points by π/2, π, and 3π/2 to deter-

mine the neighbors in the remaining three quadrants. (The points are distinct.)
Thus for i = 0, . . . nS ,

(xi, yi) = dx(cos(i dθ), sin(i dθ))+ (ei, fi),(4)

where 0 ≤ ei, fi ≤ dx/nθ .

The scheme Sort the values {u1, . . . unS } in increasing order, and let u∗ be the
median, the average of the middle two sorted values. (There are an even num-
ber of neighbors). The spatial operator�1u is discretized as 2(u0 −u∗)/dx2.
The explicit Euler discretization is then used to get the explicit solution map,

u(·, t + dt) =
(

1 − 2
dt

dx2

)
u(·, t)+ 2

dt

dx2
u∗(·, t),(5)

where the time step is bounded by the nonlinear CFL condition,

dt ≤ dx2

2
.(CFL)

Accuracy As we show below, the (formal) accuracy of the spatial scheme is

u0 − u∗
dx2

−�1u = O(dx2 + dθ).(6)

The time accuracy is O(dt) = O(dx2).
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Monotonicity We begin with the observation that the median of nS numbers
is a nondecreasing function of those values. Therefore, the map defined by
(5), which, provided (CFL) holds, gives u0(t + dt), as a convex combina-
tion of u0(t) and the median of the neighboring values, u1(t), . . . , unS (t), is
nondecreasing.

Consistency To satisfy the consistency requirement, we need to check that
(1) and (2) hold. This involves a direct argument involving Taylor expansions.

1. Given a smooth function u, and the grid points (xi, yi), i = 1, . . . , nS ,
defined according to the prescription (3), let u∗ be the median of the values
ui = u(xi, yi) for i = 1, . . . , nS .
2. First we show

u∗ = 1

2
(u(xi, yi)+ u(−xi,−yi))+O(dx dθ + dx2)(7)

where the angle i dθ is the angle closest (amongst the grid angles i dθ ) to the
direction of the tangent vector (−uy, ux). From the Taylor expansion,

ui = u0 +Du · (xi, yi)+O(dx2), i = 1, . . . , nS,

writeDu = |Du|(cos(ψ), sin(ψ)), for some angle ψ , and use (4) and dθ =
O(1/nθ), to obtain

ui = u0 + |Du| cos(ψ − i dθ)+O(dx dθ + dx2), i = 1, . . . , nS.

Next sort the values, allowing for an error in the ordering ofO(dx dθ+dx2).
Measuring distance on the circle of radius dx, let i1 be the index correspond-
ing to an angle closest to ψ , and let i2 be the next closest, and so on, until the
last index, inS is found. For distances less than π , the cosine is a decreasing
function of distance from the origin, so

cos(ψ − i1 dθ) ≥ cos(ψ − i2 dθ) ≥ · · · ≥ cos(ψ − inS dθ).

Thus
ui1 ≥ ui2 ≥ · · · ≥ uinS , up to O(dx dθ + dx2).

Further, by the symmetric choice of points, we may assume that the middle
two points point in opposite directions. So (7) is obtained.
3. Next we establish (6) from (7). Then (1) will follow from the fact that
the explicit Euler method is consistent with the time derivative. Write v for
unit vector in the direction (xi, yi). Using Taylor series expansions in the
directions v, −v, we obtain

2(u∗ − u0) = (x2
i + y2

i )v
T D2uv +O(dx4).

Since v = t +O(dθ),

2(u∗ − u0) = (x2
i + y2

i )t
T D2ut +O(dx4 + dx2dθ).
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Dividing by dx2 gives (6). Putting in forward Euler discretization in time
gives (1).
4. When the gradient is zero, we need only show the weaker consistency
condition (2). But this condition is satisfied by the average of the values at
any two neighbors, so it certainly holds for the median.

Convergence Since the scheme is consistent and monotone, solutions con-
verge, in the limit dx, dθ → 0 to the unique viscosity solution of (MC).

Boundary conditions Since (at least formally) solutions of (MC) have the
property that level sets move with normal velocity equal to the mean curva-
ture, the boundary conditions are irrelevant to level sets which do not contact
the boundary. The same should be true (at least approximately) of numerical
solutions. The implementation of boundary conditions should not affect the
monotonicity property of the scheme. This is indeed the case for Dirichlet
boundary conditions.

Rotation invariance The scheme has a discrete rotation invariance. For each
fixed dθ , the scheme is invariant under rotations by multiples of dθ . This is
an approximate statement: the exact angles are those given by the direction
vectors, which are distributed at angles close to dθ , as specified by (3).

2.2 Extension to higher dimensions

In this section we outline the extension of the scheme to higher dimensions.
From the point of view of implementation, the scheme is quite similar: the
spatial discretization is still given by computing the median of the neighbors.

The neighbors should be chosen to be distributed approximately uni-
formly on the sphere of radius dx. The dθ error is measured by the maximum
aperture of a cone centered at the reference point which does not intersect the
neighbors. The mean curvature operator is again discretized by computing
the quotient of the difference between the reference point and the median
of the neighbors with dx2. The three dimensional version of the nine point
scheme is the 27 point nearest neighbor scheme.

Convergence in higher dimensions Convergence of the scheme is established
by verifying monotonicity and consistency. Monotonicity follows as before.
Demonstrating consistency requires additional work, outlined below.
1. ToO(dx2), the mean curvature operator is equal to the Laplacian restricted
to the tangent space of the level set. So it is enough to show that the median
of the sampled values is (approximately) equal to the mean of the values dis-
tributed on a sphere of radius dx on the tangent space of the level set, since
this gives a consistent discretization of the Laplacian.
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2. Partition the sampled values into three sets according to the direction vector
of their location as follows. Those with a (non-negligible) positive compo-
nent in the direction of the normal, those with a (non-negligible) negative
component in the direction of the normal, and the remainder, which lie in (or
near) the tangent space to the level set. Within accuracy bounds, there are an
equal number of values in the first and second sets; the largest values will be
in the first set, the smallest will be in the second set. Thus the median of the
sampled values will be the median of the values in the third set.
3. At this point it is enough to consider the problem of sampled values from
a quadratic function on the intersection of a sphere with the tangent plane to
the level set. Thus it is enough to show that for a quadratic function with no
linear part, the mean of the sampled values is equal to the median. This is an
elementary argument, which we give below for the three dimensional case.
4. Dropping the constant term, and choosing coordinates on the tangent plane,
we sample values of a function of the form f (x, y) = ax2 + 2bxy + cy2 on
the circle. We claim the mean, (range), and median are all µ = (a + c)/2.
The first two assertions are elementary. The third is true because we can pair
off values of f symmetrically about the mean. Write f in polar coordinates

f (θ) = a + c

2
+ b sin(2θ)+ a − c

2
cos(2θ).

Splitting the interval [0, π] into four equal segments, there is a bijection from
the first and third segments, and from the second and fourth segments between
values of the form µ+ v and values of the form µ− v. Likewise a bijection
holds for the interval [π, 2π ]. As a result of this bijection, the median is equal
to the mean.

3 Validation and numerics

We begin with a numerical consistency check. This is followed by testing the
accuracy of the numerical solution against an exact solution, using different
stencils and grid sizes.

3.1 Consistency

The accuracy in dθ depends on how the direction of the tangent lines up
with the direction vectors of the neighboring grid points. The error is greatest
when the tangent line lies midway between two direction vectors, and negli-
gible when the tangent lines up with a direction vector.

Taking a quadratic polynomial constructed so that the tangent direction
does not line up with a grid direction vector, we verify (6) using points uni-
formly distributed on the circle of radius dx, with dθ = 2π/nS . Next, we
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Table 1. The discretization error with polynomials, with nθ points about the circle of
radius dx, and with nθ levels, taking points on boundary of the square for polynomials
p1 = 6x+1.25y+4.5x2/2+2.8xy−5.2y2/2, p2 = x− .01y+ .5x2/2+3.1xy−2y2/2

Circle: nθ 16 32 64 200 1000 105

error p1 −.1553 −.0123 −.0123 0.016 0.0024 .00008

Square: nθ 2 4 8 16 32 64 128 256

error p1 −.11 −.11 −.11 .11 .05 −.027 .013 −.0068

error p2 .06 .06 .06 .06 .06 .03 .01 .01

show that for lattice points on the boundary of the square of radius dx, with nθ
levels, taking the median still gives a consistent scheme. This demonstrates
the robustness of the discretization, since the distance of the points varies
from dx to

√
2/2 dx. The results are presented in Table 1. The improve-

ments in accuracy occur in jumps as new direction vectors come closer to the
direction of the tangent.

3.2 Implementation and validation

The implementation was performed in MATLAB. The code was under a
hundred lines long, and ran (for the 80 × 80 grid) in a few seconds on a
laptop.

Five sets of stencils were used, corresponding to different values of dθ .
The schemes are laid out in Table 2. The table lists the neighbors in the first
quadrant, which are rotated to get the full set. The schemes are illustrated in
Figure 1.

The numerical error was computed using the exact viscosity solution

u(x, y, t) = min

{
x2 + y2 − 1

2
+ t, 0

}
,

whose level sets are circles (or they are flat). While the solution is radial
(with respect to the origin), it is not locally radial, so this solution is a valid

Table 2. The schemes used for a given stencil width, nθ

nθ nS neighbors in the first quadrant

1 4 (1, 0)
1 8 (1, 0), (1, 1)
2 12 (2, 0), (2, 1), (1, 2)
3 16 (3, 0), (3, 1), (2, 2), (1, 3)
4 32 (4, 0), (4, 1), (4, 2), (3, 2), (3, 3), (2, 3), (2, 4), (1, 4)
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Fig. 1. Illustration of the schemes used for nS = 8, 12, 16

Table 3. Error in the maximum norm for different schemes, as a function of the number
of grid points used and the stencil size

Grid nS = 4 nS = 8 nS = 12 nS = 16 nS = 32

20 × 20 .110 .080 .035 .020 .024
40 × 40 .115 .080 .035 .024 .022
80 × 80 .119 .080 .035 .027 .013
160 × 160 .118 .080 .035 .027 .010
240 × 240 * .080 .035 .027 .010
360 × 360 * * .035 .027 .010
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Fig. 2. Contour plots of the −.02, and .02 contours at times 0, .015, .03, .045

test of the dθ error. Taking the minimum with zero is convenient as it allows
homogeneous Neumann boundary conditions to be used. The numerical error
in the maximum norm, after solving for t = .2 is presented in Table 3.

Finally, we present an example which demonstrated the fattening phenom-
ena [ES91]. Taking as initial data |x| − |y|, we compute the solution using
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Fig. 3. Surface plot: initial data, and solution at time .03

the nθ = 4 scheme on a 2002 grid. The solution is displayed in Figures 2
and 3.
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