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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow a function to be described in terms of a coarse
overall shape, plus details that range from broad to narrow. Regard-
less of whether the function of interest is an image, a curve, or a
surface, wavelets provide an elegant technique for representing the
levels of detail present.

In Part 1 of this primer we discussed the simple case of Haar
wavelets in one and two dimensions, and showed how they can be
used for image compression. In Part 2, we present the mathematical
theory of multiresolution analysis, then develop bounded-interval
spline wavelets and describe their use in multiresolution curve and
surface editing.

2 Multiresolution analysis

The Haar wavelets we discussed in Part 1 are just one of many bases
that can be used to treat functions in a hierarchical fashion. In this
section, we develop a mathematical framework known asmultires-
olution analysis for studying wavelets [2, 11]. Our examples will
continue to focus on the Haar basis, but the more general mathe-
matical notation used here will come in handy for discussing other
wavelet bases in later sections.

Multiresolution analysis relies on many results from linear algebra.
Some readers may wish to consult the appendix in Part 1 for a brief
review.

As discussed in Part 1, the starting point for multiresolution analysis
is a nested set of vector spaces

V0 � V1 � V2 � � � �

As j increases, the resolution of functions in Vj increases. The basis
functions for the space Vj are known as scaling functions.

The next step in multiresolution analysis is to definewavelet spaces.
For each j, we define Wj as the orthogonal complement of Vj in Vj+1.
This means that Wj includes all the functions in Vj+1 that are orthog-
onal to all those in Vj under some chosen inner product. The func-
tions we choose as a basis for Wj are called wavelets.

2.1 A matrix formulation for refinement

The rest of our discussion of multiresolution analysis will focus on
wavelets defined on a bounded domain, although we will also refer
to wavelets on the unbounded real line wherever appropriate. In the
bounded case, each spaceVj has a finite basis, allowing us to use ma-
trix notation in much of what follows, as did Lounsbery et al. [10]
and Quak and Weyrich [13].
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It is often convenient to put the different scaling functions�j
i(x) for

a given level j together into a single row matrix,

�
j(x) := [�j

0(x) � � � �j
mj�1

(x)],

where mj is the dimension of Vj. We can do the same for the
wavelets:

	
j(x) := [ j

0(x) � � �  j
nj�1

(x)],

where nj is the dimension of Wj. Because Wj is the orthogonal com-
plement of Vj in Vj+1, the dimensions of these spaces satisfy mj+1 =
mj + nj.

The condition that the subspacesVj be nested is equivalent to requir-
ing that the scaling functions berefinable. That is, for all j = 1, 2, : : :
there must exist a matrix of constants Pj such that

�
j�1(x) = �

j(x) Pj. (1)

In other words, each scaling function at level j�1 must be express-
ible as a linear combination of “finer” scaling functions at level j.
Note that since Vj and Vj�1 have dimensions mj and mj�1, respec-
tively, Pj is an mj � mj�1 matrix (taller than it is wide).

Since the wavelet space Wj�1 is by definition also a subspace of Vj,
we can write the wavelets	j�1(x) as linear combinations of the scal-
ing functions�j(x). This means there is an mj �nj�1 matrix of con-
stants Qj satisfying

	
j�1(x) = �

j(x) Qj. (2)

Example: In the Haar basis, at a particular level j there
are mj = 2j scaling functions and nj = 2j wavelets. Thus,
there must be refinement matrices describing how the two
scaling functions in V1 and the two wavelets in W1 can be
made from the four scaling functions in V2:

P2 =

2
64

1 0
1 0
0 1
0 1

3
75 and Q2 =

2
64

1 0
�1 0

0 1
0 �1

3
75

Remark: In the case of wavelets constructed on the un-
bounded real line, the columns of Pj are shifted versions
of one another, as are the columns of Qj. One column
therefore characterizes each matrix, so Pj and Qj are com-
pletely determined by sequences (: : : , p�1, p0, p1, : : :) and
(: : : , q�1, q0, q1, : : :), which also do not depend on j. Equa-
tions (1) and (2) therefore often appear in the literature as ex-
pressions of the form

�(x) =
X

i

pi �(2x � i)

 (x) =
X

i

qi �(2x � i).



These equations are referred to as two-scale relations for
scaling functions and wavelets, respectively.

Note that equations (1) and (2) can be expressed as a single equation
using block-matrix notation:�

�
j�1

	
j�1
�

= �
j
�

Pj Qj
�
. (3)

Example: Substituting the matrices from the previous ex-
ample into Equation (3) along with the appropriate basis
functions gives

[�1
0 �1

1  1
0  1

1] = [�2
0 �2

1 �2
2 �2

3]

2
64

1 0 1 0
1 0 �1 0
0 1 0 1
0 1 0 �1

3
75

It is important to realize that once we have chosen scaling func-
tions and their refinement matrices Pj, the wavelet matrices Qj are
somewhat constrained (though not completely determined). In fact,
since all functions in �j�1(x) must be orthogonal to all functions
in 	j�1(x), we know h�j�1

k j j�1
`

i = 0 for all k and `.

To deal with all these inner products simultaneously, let’s define
some new notation for a matrix of inner products. We will denote
by [h�j�1 j	j�1i] the matrix whose (k, `) entry is h�j�1

k j j�1
`

i.
Armed with this notation, we can rewrite the orthogonality condi-
tion on the wavelets as

[h�j�1 j	j�1i] = 0. (4)

Substituting Equation (2) into Equation (4) yields

[h�j�1 j�ji] Qj = 0. (5)

A matrix equation with a right-hand side of zero like this one is
known as a homogeneous system of equations. The set of all pos-
sible solutions is called the null space of [h�j�1 j�ji], and the
columns of Qj must form a basis for this space. There are a multitude
of bases for the null space of a matrix, implying that there are many
different wavelet bases for a given wavelet spaceWj. Ordinarily, we
uniquely determine the Qj matrices by imposing further constraints
in addition to the orthogonality requirement given above. For exam-
ple, the Haar wavelet matrices can be found by requiring the least
number of consecutive nonzero entries in each column.

The literature on wavelets includes various terminologies for or-
thogonality. Some authors refer to a collection of functions that are
orthogonal to scaling functions but not to each other aspre-wavelets,
reserving the term “wavelets” for functions that are orthogonal to
each other as well. Another common approach is to differentiate be-
tween an orthogonal wavelet basis, in which all functions are mu-
tually orthogonal, and a semi-orthogonal wavelet basis, in which
the wavelets are orthogonal to the scaling functions but not to each
other. The Haar basis is an example of an orthogonal wavelet basis,
while the spline wavelets we will describe in Section 3 are examples
of semi-orthogonal wavelet bases.

Finally, it is sometimes desirable to define wavelets that are not quite
orthogonal to scaling functions in order to have wavelets with small
supports. This last alternative might be termed a non-orthogonal
wavelet basis, and we will mention an example when we describe
multiresolution surfaces in Section 4.3.

2.2 The filter bank

The previous section showed how scaling functions and wavelets
could be related by matrices. In this section, we show how matrix

notation can also be used for the decomposition process outlined in
Section 2.1 of Part 1.

Consider a function in some approximation spaceVj. Let’s assume
we have the coefficients of this function in terms of some scaling
function basis. We can write these coefficients as a column matrix
of values Cj = [cj

0 � � � cj
mj�1

]
T
. The coefficients cj

i could, for ex-
ample, be thought of as pixel colors, or alternatively, as the x- or
y-coordinates of a curve’s control points in IR2.

Suppose we wish to create a low-resolution versionCj�1 of Cj with
a smaller number of coefficients mj�1. The standard approach for
creating the mj�1 values of Cj�1 is to use some form of linear filter-
ing and down-sampling on the mj entries of Cj. This process can be
expressed as a matrix equation

Cj�1 = Aj Cj (6)

where Aj is an mj�1 � mj matrix of constants (wider than it is tall).

Since Cj�1 contains fewer entries than Cj, this filtering process
clearly loses some amount of detail. For many choices of Aj, it is
possible to capture the lost detail as another column matrix Dj�1,
computed by

Dj�1 = Bj Cj (7)

where Bj is an nj�1�mj matrix of constants related toAj. The pair of
matrices Aj and Bj are called analysis filters. The process of splitting
the coefficients Cj into a low-resolution versionCj�1 and detail Dj�1

is called analysis or decomposition.

If Aj and Bj are chosen appropriately, then the original coefficients
Cj can be recovered from Cj�1 and Dj�1 by using the matrices Pj

and Qj from the previous section:

Cj = Pj Cj�1 + Qj Dj�1. (8)

Recovering Cj from Cj�1 and Dj�1 is called synthesis or reconstruc-
tion. In this context, Pj and Qj are called synthesis filters.

Example: In the unnormalized Haar basis, the matrices A2

and B2 are given by:

A2 =
1
2

�
1 1 0 0
0 0 1 1

�

B2 =
1
2

�
1 �1 0 0
0 0 1 �1

�
These matrices represent the averaging and differencing op-
erations described in Section 2.1 of Part 1.

Remark: Once again, the matrices for wavelets constructed
on the unbounded real line have a simple structure: The rows
of Aj are shifted versions of each other, as are the rows ofBj.
The analysis Equations (6) and (7) often appear in the litera-
ture as

cj�1
k =

X
`

a`�2k cj
`

dj�1
k =

X
`

b`�2k cj
`

where the sequences (: : : , a�1, a0, a1, : : :) and
(: : : , b�1, b0, b1, : : :) are the entries in a row of Aj and Bj,
respectively. Similarly, Equation (8) for reconstruction often
appears as

cj
k =

X
`

�
pk�2` cj�1

`
+ qk�2` dj�1

`

�
.
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Figure 1 The filter bank.

Note that the procedure for splitting Cj into a low-resolution
part Cj�1 and a detail part Dj�1 can be applied recursively to the
low-resolution version Cj�1. Thus, the original coefficients can be
expressed as a hierarchy of lower-resolution versions C0, : : : , Cj�1

and details D0, : : : , Dj�1, as shown in Figure 1. This recursive pro-
cess is known as a filter bank.

Since the original coefficients Cj can be recovered from the se-
quence C0, D0, D1, : : :, Dj�1, we can think of this sequence as a
transform of the original coefficients, known as awavelet transform.
Note that the total size of the transform C0, D0, D1, : : :, Dj�1 is the
same as that of the original version Cj, so no extra storage is re-
quired. (However, the wavelet coefficients may require more bits
to retain the accuracy of the original values.)

In general, the analysis filters Aj and Bj are not necessarily trans-
posed multiples of the synthesis filters, as was the case for the Haar
basis. Rather, Aj and Bj are formed by the matrices satisfying the
relation �

�
j�1

	
j�1
� � Aj

Bj

�
= �

j. (9)

Note that
�

Pj Qj
�

and

�
Aj

Bj

�
are both square matrices. Thus,

combining Equations (3) and (9) gives�
Aj

Bj

�
=
�

Pj Qj
��1

(10)

Although we have not yet gotten specific about how to choose ma-
trices Aj, Bj, Pj, and Qj, it should be clear from Equation (10) that
the two matrices in that equation must at least be invertible.

2.3 Designing a multiresolution analysis

The multiresolution analysis framework presented above is very
general. In practice you often have the freedom to design a multires-
olution analysis specifically suited to a particular application. The
steps involved are

1. Select the scaling functions�j(x) for each j = 0, 1, : : : .
This choice determines the nested approximation spaces Vj, the
synthesis filters Pj, and the smoothness—that is, the number of
continuous derivatives—of the analysis.

2. Select an inner product defined on the functions in V0, V1, : : : .
This choice determines the L2 norm and the orthogonal comple-
ment spaces Wj. Although the standard inner product is the com-
mon choice, in general the inner product should be chosen to cap-
ture a measure of error that is meaningful in the context of the
application.

3. Select a set of wavelets	j(x) that span Wj for each j = 0, 1, : : : .
This choice determines the synthesis filtersQj. Together, the syn-
thesis filters Pj and Qj determine the analysis filters Aj and Bj by
Equation (10).

It is generally desirable to construct the wavelets to form an orthog-
onal basis for Wj and to have small support (the support of a func-
tion f (x) is the set of points x where f (x) 6= 0). However, orthogonal-
ity often comes at the expense of increased supports, so a tradeoff

must be made. In the case of the spline wavelets presented in the
next section, the wavelets are constructed to have minimal support,
but they are not orthogonal to one another (except for the piecewise-
constant case). Wavelets that are both locally supported and mutu-
ally orthogonal (other than Haar wavelets) were thought to be im-
possible until Daubechies’ ground-breaking work showing that cer-
tain families of spaces Vj actually do admit mutually orthogonal
wavelets of small support [5].

3 Spline wavelets

Until now, the only specific wavelet basis we have considered is the
Haar basis. Haar basis functions have a number of advantages, in-
cluding

� simplicity,

� orthogonality,

� very small supports,

� nonoverlapping scaling functions (at a given level), and

� nonoverlapping wavelets (at a given level),

which make them useful in many applications. However, despite
these advantages, the Haar basis is a poor choice for applications
such as curve editing [8] and animation [9] because of its lack of
continuity.

There are a variety of ways to construct wavelets with k continu-
ous derivatives. One such class of wavelets can be constructed from
piecewise-polynomial splines. These spline wavelets have been de-
veloped to a large extent by Chui and colleagues [3, 4]. The Haar ba-
sis is in fact the simplest instance of spline wavelets, resulting when
the polynomial degree is set to zero.

In the following, we briefly sketch the ideas behind the construc-
tion of endpoint-interpolating B-spline wavelets. Finkelstein and
Salesin [8] developed a collection of wavelets for the cubic case,
and Chui and Quak [4] presented constructions for arbitrary degree.
Although the derivations for arbitrary degree are too involved to
present here, we give the synthesis filters for the piecewise-constant
(Haar), linear, quadratic, and cubic cases in Appendix A. The next
three sections parallel the three steps described in Section 2.3 for
designing a multiresolution analysis.

3.1 B-spline scaling functions

Our first step is to define the scaling functions for a nested set of
function spaces. We’ll start with the general definition of B-splines,
then specify how to make uniformly spaced, endpoint-interpolating
B-splines from these. (More detailed derivations of these and other
splines appear in a number of standard texts [1, 7].)

Given positive integers d and k, with k � d, and a collection of
non-decreasing valuesx0, : : : , xk+d+1 called knots, the nonuniform B-
spline basis functions of degree d are defined recursively as follows.
For i = 0, : : : , k, and for r = 1, : : : , d, let

N0
i (x) :=

�
1 if xi � x < xi+1

0 otherwise

Nr
i (x) :=

x � xi

xi+r � xi
Nr�1

i (x) +
xi+r+1 � x

xi+r+1 � xi+1
Nr�1

i+1 (x).

(Note: The fractions in these equations are taken to be 0 when their
denominators are 0.)

The endpoint-interpolating B-splines of degree d on [0, 1] result
when the first and last d + 1 knots are set to 0 and 1, respectively. In
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Figure 2 B-spline scaling functions for V1(d) with degree d =
0, 1, 2, and 3.

this case, the functions Nd
0(x), : : : , Nd

k (x) form a basis for the space
of piecewise-polynomials of degree d with d�1 continuous deriva-
tives and breakpoints at the interior knots xd+1 < xd+2 < � � � < xk.

To make uniformly spaced B-splines, we choose k = 2j + d � 1
and xd+1, : : : , xk to produce 2j equally spaced interior intervals. This
construction gives 2j + d B-spline basis functions for a particular
degree d and level j. We will use these functions as the endpoint-
interpolating B-spline scaling functions. Figure 2 shows examples
of these functions at level j = 1 (two interior intervals) for various
degrees d. Note that the basis functions defined here are not normal-
ized in the L2 norm.

If Vj(d) denotes the space spanned by the B-spline scaling functions
of degree d with 2j uniform intervals, it is not difficult to show that
the spaces V0(d), V1(d), : : : are nested as required by multiresolution
analysis.

The rich theory of B-splines can be used to develop expressions for
the entries of the refinement matrix Pj (see Chui and Quak [4] or
Quak and Weyrich [13] for details). The columns of Pj are sparse,
reflecting the fact that the B-spline basis functions are locally sup-
ported. The first and last d columns of Pj are relatively compli-
cated, but the remaining (interior) columns are shifted versions of
column d + 1. Moreover, the entries of these interior columns are,
up to a common factor of 1=2d , given by binomial coefficients.

Example: In the case of cubic splines (d = 3), the matrix Pj

for j � 3 has the form

Pj =
1
8

2
666666666666666666664

8
4 4

6 2
3
2

11
2 1
4 4
1 6 1

4 4
1 6

4 �

1 � 1
� 4

6 1
4 4
1 11

2
3
2

2 6
4 4

8

3
777777777777777777775

where blank entries are taken to be zero, and the dots indi-
cate that the previous column is repeated, shifted down by
two rows each time.

3.2 Inner product

The second step of designing a multiresolution analysis is the choice
of an inner product. We’ll simply use the standard inner product
here:

hf j gi :=

Z 1

0

f (x) g(x) dx.

3.3 B-spline wavelets

To complete our development of a multiresolution analysis based on
B-splines, we need to find basis functions for the spacesWj that are
orthogonal complements to the spacesVj. As shown in Section 2.1,
the wavelets are determined by matrices Qj satisfying Equation (5),
which we repeat here for convenience:

[h�j�1 j�ji] Qj = 0. (11)

Since this is a homogeneous system of linear equations, there is
not a unique solution. We must therefore impose additional condi-
tions. To get wavelets with small supports, for example, we require
each column of Qj to have a minimal number of consecutive non-
zeros. This constraint imposes a banded structure on Qj similar to
that of Pj. For each column q of Qj, Equation (11) leads to a small
homogeneous system that we solve for the non-zero entries in q.
The matrices that result and the corresponding B-spline wavelets are
shown in Appendix A

Finkelstein and Salesin [8] took this approach to construct cubic B-
spline wavelets. Chui and Quak [4] derived slightly different spline
wavelets using derivative and interpolation properties of B-splines.
Note that both approaches result in semi-orthogonal wavelet bases:
The wavelets are orthogonal to scaling functions at the same level,
but not to each other, except in the piecewise-constant case.

3.4 B-spline filter bank

At this point, we have completed the steps in designing a multires-
olution analysis. However, to use spline wavelets, we must im-
plement a filter bank procedure incorporating the analysis filtersAj

and Bj. These matrices allow us to determine Cj�1 and Dj�1 from Cj

using matrix multiplication as in Equations (6) and (7). As dis-
cussed earlier in Section 2, the analysis filters are uniquely deter-
mined by the inverse relation in Equation (10):�

Aj

Bj

�
=
�

Pj Qj
��1

However, as Quak and Weyrich [13] point out, when implementing
the filter bank procedure for spline wavelets, it is generally not a
good idea to form the filters Aj and Bj explicitly. Although Pj and Qj

are sparse, having onlyO(d) entries per column, Aj and Bj are in gen-
eral dense, so matrix–vector multiplication would require quadratic
instead of linear time.

Fortunately, there is a better approach. The idea is to computeCj�1

and Dj�1 from Cj by solving the sparse linear system

�
Pj Qj

�� Cj�1

Dj�1

�
= Cj.

In order to solve this system for

�
Cj�1

Dj�1

�
, we first make the ma-

trix
�

Pj Qj
�

into a banded matrix simply by interspersing the
columns of Pj and Qj. The resulting banded system can then be
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(a) (b) (c) (d)

Figure 3 Changing a curve’s overall sweep without affecting its
character. Given the original curve (a), the system extracts the over-
all sweep (b). If the user modifies the sweep (c), the system can re-
apply the detail (d).

1
2

3
4

Figure 4 The middle of the dark curve is pulled, using editing at var-
ious levels of smoothing j. A change in a control point in C1 has a
very broad effect, while a change in a control point inC4 has a nar-
row effect.

solved in linear time using LU decomposition [12]. Thus we can
compute the entire filter bank operation without ever forming and
using Aj or Bj explicitly.

4 Application III: Multiresolution curves and surfaces

We presented two applications of wavelets in Part 1: compression of
one-dimensional signals and compression of two-dimensional im-
ages. Our third application of wavelets in computer graphics is
curve design and editing, as described in detail by Finkelstein and
Salesin [8]. Their multiresolution curves are built from a wavelet
basis for endpoint-interpolating cubic B-splines, which we dis-
cussed in the previous section.

Multiresolution curves conveniently support a variety of opera-
tions:

� changing a curve’s overall “sweep” while maintaining its fine de-
tails, or “character” (Figures 3 and 4);

� changing a curve’s “character” without affecting its overall
“sweep” (Figure 5);

� editing a curve at any continuous level of detail, allowing an ar-
bitrary portion of the curve to be affected through direct manipu-
lation;

� smoothing at continuous levels to remove undesirable features
from a curve;

� approximating or “fitting” a curve within a guaranteed maximum
error tolerance, for scan conversion and other applications.

Here we’ll describe briefly just the first two of these operations,
which fall out quite naturally from the multiresolution representa-
tion.

4.1 Editing the sweep of the curve

Editing the sweep of a curve at an integer level of the wavelet
transform is simple. Let CJ be the control points of the original
curve f J(t), let Cj be a low-resolution version of CJ , and let Ĉ

j
be

an edited version of Cj, given by Ĉ
j

= Cj + �Cj. The edited ver-
sion of the highest resolution curve Ĉ

J
= CJ +�CJ can be computed

Figure 5 Changing the character of a curve without affecting its sweep.

through synthesis:

Ĉ
J

= CJ + �CJ

= CJ + PJ PJ�1 � � �Pj+1
�Cj.

Note that editing the sweep of the curve at lower levels of smooth-
ing j affects larger portions of the high-resolution curve f J(t). At the
lowest level, when j = 0, the entire curve is affected. At the highest
level, when j = J, only the narrow portion influenced by one original
control point is affected. The kind of flexibility that this multireso-
lution editing allows is suggested in Figures 3 and 4.

4.2 Editing the character of the curve

Multiresolution curves also naturally support changes in the char-
acter of a curve, without affecting its overall sweep. Let CJ be the
control points of a curve, and letC0, D0, : : :, DJ�1 denote its wavelet
transform. Editing the character of the curve is simply a matter of re-
placing the existing set of detail coefficientsDj, : : : , DJ�1 with some
new set D̂

j
, : : : , D̂

J�1
, and reconstructing. To avoid coordinate-

system artifacts, all detail coefficients are expressed in terms of the
curve’s local tangent and normal, rather than the x and y directions.

Figure 5 demonstrates how the character of curves in an illustration
can be modified with various detail styles. (The interactive illus-
tration system used to create this figure was described by Salisbury
et al. [14].)

4.3 Multiresolution surfaces

Multiresolution editing can be extended to surfaces by using ten-
sor products of B-spline scaling functions and wavelets. Either
the standard construction or the nonstandard construction described
in Part 1 for Haar basis functions can be used to form a two-
dimensional basis from a one-dimensional B-spline basis. We can
then edit surfaces using the same operations described for curves.
For example, Figure 6 shows a bicubic tensor-product B-spline sur-
face after altering its sweep at different levels of detail.

We can further generalize multiresolution analysis to surfaces of
arbitrary topology by defining wavelets based on subdivision sur-
faces, as described by Lounsbery et al. [10]. Their nonorthogonal
wavelet basis, in combination with the work of Eck et al. [6], al-
lows any polyhedral object to be decomposed into scaling function
and wavelet coefficients. Then a compression scheme similar to the
one presented for images in Section 3.3 of Part 1 can be used to dis-
play the object at various levels of detail simply by leaving out small
wavelet coefficients during reconstruction. An example of this tech-
nique is shown in Figure 7.

5 Conclusion

Our primer has only touched on a few of the many uses for wavelets
in computer graphics. We hope this introduction to the topic has ex-
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(a) (b) (c) (d)

Figure 6 Surface manipulation at different levels of detail: The original surface (a) is changed at a narrow scale (b), an intermediate scale (c),
and a broad scale (d).

(a) (b) (c)

Figure 7 Surface approximation using subdivision surface wavelets: (a) the original surface, (b) an intermediate approximation, and (c) a coarse
approximation.

plained enough of the fundamentals for interested readers to explore
both the construction of wavelets and their application to problems
in graphics and beyond. We present a more thorough discussion in
a forthcoming monograph [15].
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A Details on endpoint-interpolating B-spline wavelets

This appendix presents the matrices required to apply endpoint-
interpolating B-spline wavelets of low degree. (The Matlab code
used to generate these matrices is available from the authors upon
request.) These concrete examples should serve to elucidate the
ideas presented in Section 3. To emphasize the sparse structure of
the matrices, zeros have been omitted. Diagonal dots indicate that
the previous column is to be repeated the appropriate number of
times, shifted down by two rows for each column. The P matrices
have entries relating the unnormalized scaling functions defined in
Section 3, while the Q matrices have entries defining normalized,
minimally supported wavelets. Columns of the Q matrices that are
not represented exactly with integers are given to six decimal places.

A.1 Haar wavelets

The B-spline wavelet basis of degree 0 is simply the Haar basis de-
scribed in Section 2 of Part 1. Some examples of the Haar basis scal-
ing functions and wavelets are depicted in Figure 8. The synthesis
matrices Pj and Qj are

Pj =

2
64

1
1

1
1 �

�
� 1

1

3
75 Qj =

p
2j
2

2
64

1
�1

1
�1 �

�
� 1
�1

3
75

Figure 8 Piecewise-constant B-spline scaling functions and
wavelets for j = 3.

A.2 Endpoint-interpolating linear B-spline wavelets

Figure 9 shows a few typical scaling functions and wavelets for
linear B-splines. The synthesis matrices Pj and Qj for endpoint-
interpolating linear B-spline wavelets are

P1 = 1
2

h
2
1 1

2

i

P2 = 1
2

"
2
1 1

2
1 1

2

# Pj�3 = 1
2

2
666664

2
1 1

2
1 1

2
1 �

�
� 1

2
1 1

2

3
777775

Q1 = p
3

h
�1

1
�1

i
Q2 =

q
3
64

"
�12

11 1
�6 �6

1 11
�12

#

Qj�3 =
q

2j

72

2
66666664

�11. 022704
10. 104145 1
�5. 511352 �6

0. 918559 10 1
�6 �6

1 10
�6 �

1 � 1
� �6

10 0. 918559
�6 �5. 511352

1 10. 104145
�11. 022704

3
77777775

Figure 9 Linear B-spline scaling functions and wavelets forj = 3.
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A.3 Endpoint-interpolating quadratic B-spline wavelets

Figure 10 shows some quadratic B-spline scaling functions and wavelets. The synthesis matricesPj and Qj for the quadratic case are

P1 = 1
2

�
2
1 1

1 1
2

�
P2 = 1

4

2
4 4

2 2
3 1
1 3

2 2
4

3
5 Pj�3 = 1

4

2
66666664

4
2 2

3 1
1 3

3 1
1 3

3 �
1 � 1

� 3
3 1
1 3

2 2
4

3
77777775

Q1 =
q

5
4

�
�2

3
�3

2

�
Q2 =

q
3

4936

2
4 �144

177 21
�109 �53

53 109
�21 �177

144

3
5 Q3 =

q
1

713568

2
66664

�4283. 828550
5208. 746077 780

�3099. 909150 �1949 �11
1300. 002166 3481 319
�253. 384964 �3362 �1618 �8. 737413

8. 737413 1618 3362 253. 384964
�319 �3481 �1300. 002166

11 1949 3099. 909150
�780 �5208. 746077

4283. 828550

3
77775

Qj�4 =
q

3 � 2j

136088

2
666666666664

�381. 872771
464. 322574 69. 531439

�276. 334798 �173. 739454 �1
115. 885924 310. 306330 29
�22. 587463 �299. 698329 �147 �1

0. 778878 144. 233164 303 29
�28. 436576 �303 �147

0. 980572 147 303 �1
�29 �303 � 29

1 147 � �147 �0. 980572
�29 � 303 28. 436576

1 �303 �144. 233164 �0. 778878
147 299. 698329 22. 587463
�29 �310. 306330 �115. 885924

1 173. 739454 276. 334798
�69. 531439 �464. 322574

381. 872771

3
777777777775

Figure 10 Quadratic B-spline scaling functions and wavelets forj = 3.
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A.4 Endpoint-interpolating cubic B-spline wavelets

Some examples of cubic B-spline scaling functions and wavelets are shown in Figure 11. The synthesis matricesPj and Qj for endpoint-
interpolating cubic B-spline wavelets are

P1 = 1
2

"
2
1 1

1 1
1 1

2

#
P2 = 1

16

2
64

16
8 8

12 4
3 10 3

4 12
8 8

16

3
75 Pj�3 = 1

16

2
666666666664

16
8 8

12 4
3 11 2

8 8
2 12 2

8 8
2 12

8 �
2 � 2

� 8
12 2

8 8
2 11 3

4 12
8 8

16

3
777777777775

Q1 = p
7

"
1

�2
3

�2
1

#
Q2 =

q
315

31196288

2
64

1368
�2064 �240

1793 691
�1053 �1053

691 1793
�240 �2064

1368

3
75 Q3 =

2
666664

6. 311454
�9. 189342 �1. 543996

7. 334627 4. 226722 0. 087556
�3. 514553 �5. 585477 �0. 473604 �0. 000155

1. 271268 6. 059557 1. 903267 0. 019190
�0. 259914 �4. 367454 �4. 367454 �0. 259914

0. 019190 1. 903267 6. 059557 1. 271268
�0. 000155 �0. 473604 �5. 585477 �3. 514553

0. 087556 4. 226722 7. 334627
�1. 543996 �9. 189342

6. 311454

3
777775

Qj�4 =
q

5 � 2j

675221664

2
666666666666666664

25931. 200710
�37755. 271723 �6369. 305453

30135. 003012 17429. 266054 385. 797044
�14439. 869635 �23004. 252368 �2086. 545605 �1

5223. 125428 24848. 487871 8349. 373420 124
�1067. 879425 �17678. 884301 �18743. 473059 �1677 �1

78. 842887 7394. 685374 24291. 795239 7904 124
�0. 635830 �1561. 868558 �18420. 997597 �18482 �1677

115. 466347 7866. 732009 24264 7904
�0. 931180 �1668. 615872 �18482 �18482 �1

123. 378671 7904 24264 124
�0. 994989 �1677 �18482 � �1677 �0. 994989

124 7904 � 7904 123. 378671
�1 �1677 � �18482 �1668. 615872 �0. 931180

124 24264 7866. 732009 115. 466347
�1 �18482 �18420. 997597 �1561. 868558 �0. 635830

7904 24291. 795239 7394. 685374 78. 842887
�1677 �18743. 473059 �17678. 884301 �1067. 879425

124 8349. 373420 24848. 487871 5223. 125428
�1 �2086. 545605 �23004. 252368 �14439. 869635

385. 797044 17429. 266054 30135. 003012
�6369. 305453 �37755. 271723

25931. 200710

3
777777777777777775

Figure 11 Cubic B-spline scaling functions and wavelets forj = 3.
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