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Abstract
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1 Introduction

In this paper, we verify a conjecture of P. Seymour [13, (16.5)] which regards covering the elements of a
binary matroid with circuits. We give a forbidden-minor characterization of those matroids which have
a certain “Circuit Cover Property”. The special case regarding graphic matroids, solved in [1], has had
a number of implications for problems such as the Cycle Double Cover Conjecture, the Chinese Postman
Problem, and Eulerian Decompositions [3, 6, 8, 17, 18, 19, 20]. We extend this result to the class of binary
matroids by applying some fairly standard matroid decomposition techniques. This strategy involves
verifying the conjecture for certain small matroids, and demonstrating that the relevant properties are
preserved under matroid sums. The most involved single step (Lemma 5.4) requires checking that the
bonds of a particular graph of order eight satisfy the conjecture. We assume familiarity with basic matroid
theory such as in [15].

Let M be a binary matroid on ground set £ = E(M) and let p : E — Z. A circuit cover of the weighed
matroid (M, p) is a list of circuits of M such that each element e is contained in exactly p(e) circuits in
the list. If (M, p) has a circuit cover, then the following three admissibility conditions must hold for any

e € F and any cocircuit B.

1.1 ple) € Z4
1.2 p(B) =0 (mod 2)
1.3 Ife € B, then p(e) < p(B —e¢).

(Here, Z4 denotes the non-negative integers. For SCE we write p(S) for ) ¢ p(e), and S—e for S—{e}.)
The necessity of these conditions follows from the fact that, in a binary matroid, any circuit meets each
cocircuit in an even number of elements. We say that (M, p) is eulerian if it satisfies 1.2 for all cocircuits
B, (M, p) is balanced if it satisfies 1.3 for all pairs (B, e), and (M, p) is admissible if it satisfies 1.1, 1.2 and
1.3 for all pairs (B, e). A binary matroid M has the circuit cover property if (M, p) has a circuit cover for

every admissible weight function p.

1.4 Theorem (Main Theorem) Let M be a binary matroid. Then M has the circuit cover property if
and only if M has no minor isomorphic to any of F¥, Rig, M*(K5) or M(Piq).

We describe here these matroids and some terminology. If M is a matroid then M* denotes its dual.
For any graph G = (V, E), M(G) denotes the matroid on E(G) whose circuits are the edge sets of polygons
(simple closed walks) in G. The dual matroid M*(G) has as circuits the edge sets of bonds (minimal edge
cuts) in G. Matroids of the form M(G) (M*(G)) for some graph G are said to be graphic (cographic).
The complete graph on n vertices is denoted K,,, complete bipartite graphs are denoted with K, ;, and
Petersen’s graph is denoted Pig. The Wagner graph Vs (sometimes called the Méebius ladder of order
eight) is obtained from the polygon vov; ... v7v9 by adding four new edges of the form v;v;44. The Fano
matroid F7 is the binary matroid represented over GF(2) by the seven non-zero binary 3-tuples. Thus

the circuits of F?¥ are precisely the 4-arcs of the projective plane PG(2,2). We denote by Rig the unique



10-element regular matroid which is neither graphic nor cographic (see [13]). This matroid is conveniently
represented by the edges of K5, where SCFE(K5) is a circuit of Rig if and only if S induces in K5 either a
polygon of length four or the complement of a polygon of length four.

As graphic matroids have no minors isomorphic to F%, Rig or M*(Ks), the main theorem extends (and

relies on) the following result which was proved in [1].

1.5 Corollary A graphic matroid M(G) has the circuit cover property if and only if G has no subgraph

contractible to Pig. O

A circuit cover of a weighted cographic matroid (M*(G),p) corresponds to a covering of E(G) with
bonds. Thus a graph G has the bond cover property if (G, p) has a bond cover for every p : B(G) — Z4
such that (the edge set of) every polygon has even total weight and no edge has more than half the total
weight of any polygon containing it. As none of F¥, Rig and M(Pyg) is cographic, Theorem 1.4 implies
the following.

1.6 Corollary A graph has the bond cover property if and only if it has no subgraph contractible to K.

O

2 Bad Minors

Let M be a matroid. For SCE(M), the (0, 1)-characteristic vector in @Z(M) corresponding to S is denoted
with y°. A weighted matroid (M, p) is circuit minimal if (M, p) is admissible, but (M,p — x%) is not
admissible for any circuit C of M. If (M,p) is circuit minimal then (M, p) has no circuit cover, and M

does not have the circuit cover property. A k-circuit is a circuit of cardinality k.
2.1 Lemma None of F}, Rig, M*(K5) and M(Pyo) has the circuit cover property.

Proo¥r. For each of these matroids we describe a circuit-minimal weighting p.

Ff: Let C be a fixed 4-circuit of F¥. Put p(e) = 1 for all e € C, and p(e) = 2 for the remaining 3 elements
in F7.

Ryt Let S be any 3-subset of elements not contained in any 4-circuit of Rjg. Put p(e) = 3 for all e € S,

and p(e) = 1 for the remaining 7 elements in Rjg.

M*(K5): Let T be six edges in K5 which induce a subgraph isomorphic with K5 3. Put p(e) = 1 for all
e € T, and p(e) = 2 for the remaining four edges in Ks.

M(Pig): Let F be the edges in a fixed 1-factor of Pyg. Put p(e) = 2 for all e € F, and p(e) = 1 for the

remaining 10 edges in Piq.

It is routine to verify that all four weighted matroids are circuit minimal. m|



2.2 Remark There is an easy way to check that the first three of the above four weighted matroids (M, p)

have no circuit cover. In each case, we define a function s on E(M) via

1 if p(e) =1,
s(e) =
—1 otherwise.
One easily checks that s has negative inner product with p whereas s(C') is non-negative for each cir-
cuit C' of M. By Farkas’ lemma p cannot be expressed as a linear combination of the vectors {x© :
C'is a circuit in M} with nonnegative coefficients, whereas a circuit cover corresponds to such a linear
combination with nonnegative integer coefficients. This argument fails for M(Pyg) since the weighting

described above is a nonnegative half-integral combination of circuits.

A cycle in a binary matroid M is any disjoint union of circuits in M. The cycles of M form a subspace
of GF(2)PM) | called the cycle space, under the symmetric difference operator “A”. Clearly (M,p) has a
cycle cover if and only if it has a circuit cover. The terms cocycle and cocycle space are defined analogously.
If (M, p) is a weighted matroid, then any minor M’ of M, induces a weighted minor (M', plg(ay), which
we often denote by (M’,p) where no confusion results. As a further abuse, we may write ¢ € M and
p: M — Z instead of e € F(M) and p : F(M) — Z. We say that a cocycle D is balanced in (M, p) if
p(e) < p(D —e) forall e € D.

2.3 Lemma If a binary matroid M has the circuit cover property then any minor of M also has the circuit

cover property.

ProoF. Assume M has the circuit cover property and let f € M. We show that both M\ f and M/ f have
the circuit cover property. First, suppose that (M\f, p) is admissible. We extend the definition of p to M
by setting p(f) := 0. Then (M, p) is clearly admissible and thus has a circuit cover (C;). Since p(f) = 0,
(C;) is also a circuit cover of (M\f), so M\ f has the circuit cover property.

Now suppose that (M/f,p) is admissible. We may assume that f is contained in some cocircuit of M,

since otherwise f is a loop and M/f = M\ f. We extend p to E(M) by setting
p(f) := min{p(B — f) : B is a cocircuit in M containing f}.

Let By be a cocircuit in M achieving this minimum. We claim that (M, p) is admissible.

Let B be any cocircuit in M. We may assume f € B, for otherwise B is a cocircuit in M/ f, whence
1.2 and 1.3 hold for B. Since BABy is a cocycle in M not containing f, BA By is a cocycle in M/ f, so its
total weight is even. We have, modulo 2, that p(BABg) = p(B) + p(Bq), so p(B) = p(Bo) = 2p(f) = 0.
Thus (M, p) is eulerian. Let e € B. If e € B N By, then we have p(e) < p(By —e) < p(B —¢), by the
choice of By. If e € B— Bg, then BA By is a cocycle of M/ f containing e, and thus p(e) < p(BABy—e¢) <
p(B—f)+p(Bo—f)—ple) = p(B—f)+p(f) —ple) = p(B —e). Hence (M, p) is balanced, and thus
admissible. Let (C;) be a circuit cover of (M, p). Each C; — {f} is a cycle in M/f. Thus (C; — {f}) isa
cycle cover of (M/f,p), and M/ f has the circuit cover property.



3 Decomposition Theorems

We derive here a decomposition theorem for the class of matroids with which this paper is concerned.
Although we use the terminology of Truemper [14], it suits our purposes to define matroid sums in terms
of cycles and cocycles (as in Seymour [12]) rather than the matrix operations of Truemper. We refer the
reader to Sections 8.5, 10.5 and 11.3 of [14], as well as to Section 12.4 of [15].

Let M1, M5 be binary matroids whose ground sets Fy, E2 may intersect. We denote by M; A M, the
matroid on F1AE,; whose cycles are all subsets of F1AE5 of the form C;AC,, where C; is a cycle in M;,

t = 1,2. In particular, we define the following three matroid sums.
1. MiAM,is a l-sum of My and M, if 1N Ey = 0.

2. M{AMs is a 2-sum of My and M if Ey N Ey = {f}, where f is neither a loop nor a coloop of M; or
Ms.

3. M{AMs is a Y-sum of My and M, if |Ey N E3| = 3, where Z := E; N E5 is a cocircuit of size 3 in
both M; and M5, and Z contains no circuit of either M7 or Ms.

A matroid sum of M7 and M5 is said to be proper if it contains proper minors isomorphic with M7 and
M. If M and M’ are matroids, then an M’ minor of M is a minor of M isomorphic with M’. We state
two classical decomposition results. The first is due to Seymour (see [12, (11.3.16) and (11.3.19)]).

3.1 Lemma FEvery binary matroid with no F7 minor may be constructed recursively by means of proper

1-sums, 2-sums and Y-sums, starting from copies of F;, Rig, graphic, and cographic matrouds. O

We note that a Y-sum can not involve a copy of either R1q or F7 since neither matroid has a cocircuit
of cardinality three. The second decomposition result is essentially due to Wagner [16]. Tt is stated in dual

form in [14, (10.5.15)]. A matroid is planar if it is both graphic and cographic.

3.2 Lemma FEvery cographic matroid with no M*(Ks) minor may be constructed recursively by means of

proper 1-sums, 2-sums and Y-sums starting from copies of M*(Ksz3), M*(Vs), and planar matroids. O

Seymour [12, (6.10)] observes that M*(Ks3), which is a minor of M*(V3), may be dropped from the
list of starting minors provided we do not require the sums to be proper. Indeed the following is easy to

check.

3.3 Proposition Fvery proper minor of M*(Vs) is either planar or is a Y-sum of two planar matroids. O

3.4 Lemma FEvery binary matroid with no F}, Rig, M*(K5) or M(P1g) minor may be constructed recur-
swely by means of 1-sums, 2-sums and Y-sums starting from copies of Fr, M*(Vg), and graphic matroids

containing no M (Pig) minor.

PrOOF. Let M be a binary matroid with no minor isomorphic to F7, Riq, M*(Ks) or M(Pig). We
decompose M via Lemma 3.1, obtaining a list L of matroids. Since the sums in Lemma 3.1 are proper,

each matroid in L is one of following.



o F7
e cographic, with no M*(Ks)-minor
e graphic, with no M(Pyg)-minor.

We have used here that M (Pig) is not cographic and M*(K5) is not graphic. We further decompose each
cographic matroid in L by applying Lemma 3.2. Finally we apply Proposition 3.3 to eliminate copies of
M*(K33) and obtain our final decomposition. As planar matroids are graphic and have no M (Pj)-minor,

each matroid in the final decomposition is of the required type. m]

4 Preservation under sums

We show here that the circuit cover property is preserved by l-sums, 2-sums and Y-sums. We note that
the operation that is dual to the Y-sum, called A-sum by Truemper [14] and used by Seymour [12, 13],
does not preserve the circuit cover property. For example, F; has the circuit cover property (Lemma 5.3),
whereas any A-sum of two copies of F7 has an F?7 minor. However, the proof of Lemma 4.2 below has a

similar flavour to (7.2) and (7.3) of [13]. We first state an observation of Seymour [12, p. 319].

4.1 Lemma Let M be a 1-sum, 2-sum or Y-sum of binary matroids My and My. Then the cocycles of M
are precisely the subsets of E1/AEy of the form B1ABs, where B; is a cocycle of M;, 1 =1,2. O

4.2 Lemma Suppose M 1is a 1-sum, 2-sum or Y-sum of binary matroids My and M-, where both M, and

My have the circuit cover property. Then M has the circuit cover property.

Proor. We omit the 1-sum case as its proof is almost trivial. Let M be a 2-sum of M; and M5 where
MiNMs = {f} and where each M; has the circuit cover property. We proceed by constructing an admissible
weighting p; of M;, i = 1,2. Let ¢ € {1,2}. Since f is not a loop in M;, some cocircuit in M; contains f.
We choose such a cocircuit D; which minimizes p(D; — {f}), and let n; denote this minimum. We assume

without loss of generality that ny < ny. For i = 1,2 we define p; : M; — Z by
ny ife=f
pi(e) = :
p(e) otherwise.

From this definition we immediately have
p1(e) < p1(Dy — {e}), forall e € D;. (1)

We now show that each (M;,p;) is admissible. Let i € {1,2}. By Lemma 4.1 each cocircuit D in M; not
containing f is a cocycle in M. Since (M, p) is admissible and since p and p; coincide on D, D is balanced
and eulerian in (M;, p;). We assume now that D is a cocircuit in M; containing f. By Lemma 4.1, DAD,

is a cocycle of M, so DAD; is balanced and has even total weight in (M, p). Since p1(D;) is even and



p(DAD;) = pi(D) + p1(D1) (mod 2), it follows that p;(D) is even. Let e € D. If e € DN Dy, then by (1)
and the choice of Dy

pi(e) = p1(e) < p1(D1 — {e}) < pi(D — {e}).

If e€ D— Dy, then e € D1AD and

pi(e) = p(e) < p(DAD1—{e}) < p(D—{f})+p(Dr1—{f})—p(e) = pi(D—{f})+pi(f)—pi(e) = pi(D—{e}).

Thus (M;, p;) is admissible and, by hypothesis, has a circuit cover L;, i = 1,2. We form a cycle cover of
(M, p) by “pairing off” the circuits in Ly which contain f with those in Ly which contain f. More precisely,
we let L] be the sublist of L; consisting of the ny circuits which contain f, ¢ = 1,2, and let g : L} — L be
any bijection. The list (L; — L{) U (Ly — L) U (CAg(C) : C € L)) is a cycle cover of (M, p). Thus M has
the circuit cover property.

We assume now that M is a Y-sum of M; and My where each M; has the circuit cover property. Let
MiN My =27 ={e1,eq,e3} where Z is a cocircuit in both M; and Ms. Let p be an admissible weighting
of M. Let i € {1,2} and j € {1,2,3}. Since Z contains no circuit of M;, ¢; is not a loop in M;/(Z — {¢;})
and thus there is a cocircuit D in M; such that DN Z = {e;}. Let d;; be the minimum of p(D — ¢;)
over all such cocircuits D, and let D;; be a cocircuit attaining this minimum. For j = 1,2,3, we define
n; := min{ds;, ds;}, and let D; be a cocircuit in {Dn;, Do;} with p(D; — p) = nj. Let n 1= ny + ny + na.
For i = 1,2 we define the weighting p; : M; — Z by

B min{n;,n—n;} if e =¢;, for some j € {1,2,3}
pile) =
p(e) otherwise.

We now show each (M;, p;) is admissible. Let i € {1,2}. Let D be any cocircuit of M;. We have four cases
depending on |Z N D).

Case |Z N D| = 3: Here D = Z. By construction of p;, 7 is balanced in (M;,p;). Tts weight, p;(7),
equals either n or 2n — 2n; for some j € {1,2,3}, and thus Z is eulerian provided that n is even. By
Lemmad.l, D1ADyAD3sAZ is a cocycle of M, and so n = ny +na+ng = p(D1)+p(D2)+p(D3)—p(7) =
p(D1ADADsAZ) =0 (mod 2), as required.

Case |Z N D| = 0: Here Z is a cocycle of M, and is thus balanced and eulerian in (M;, p;).

Case |ZND| = 1: By symmetry we may assume ZND = {e1}. If p;(e1) = n1, then by the same argument
as in the 2-sum case, D is eulerian and balanced in (M;, p;). We assume that p;(e1) = na2 + n3 < ny,
pi(ea) = na, and p;(ez) = nz. We claim that neither M; nor M3 contains both Dy and Ds. Otherwise,
Dy AD3AD would be a cocycle in My or My such that (DyADsAD)NZ = {ey}. This cocycle contains a
cocircuit D] with D{ N Z = {e1}. For k = 1,2 we have

pr(D} —{e1}) < pe(Da = {ea}) + pr(D3 — {ea}) = na+n3 < my

contradicting the minimality of n; and proving our claim. Hence exactly one of Dy, D3, say Ds, belongs

to M;. Now Df := DyADAZ is a cocycle of M; with DN Z = {es}. Since p;(D%), pi(D2) and p;(7)



are even, and p;(D4) = pi(D2) + pi(D) + pi(Z) (mod 2), p;(D) is even. We now show D is balanced in
(M;,p;). Let e € D. If e € DN Dy, then

IN

pi(e) pi(D2 — {e}) = pi(D2 — {e2

)+ ple2) — pi(e)
ny +ns —pi(e) < 2(na +n pi

— pi(e) = 2pi(er) — pile)
=pi(D —{e}).

Ife € D— Dy, then e € Df = Dy ADAZ. Since DyN7Z = {es} and p(e3) = ng, Dy is balanced and eulerian

}
)
< pi(D—{e1}) +piler) — pie)

in (M;, p;) as in the second sentence of this case. Therefore

pi(e) < pi(D2ADAZ —{e}) < pi(D — {e1}) + p(D2 — {e2}) + pi(es) — pi(e)
= pi(D—A{er}) +pier) — pi(e) = pi(D — {e}).
Case |Z N D| = 2: We may assume that DN Z = {e1,e2} so that DAZ is a cocycle of M; satisfying
(DAZYNZ = {e3}. Asin the previous case, p;(DAZ) is even. Since p;(7) is even, p;(D) is even. We now

show that D is balanced in (M;,p;) Let e € D. If e € D — {e1, €3}, then e € DAZ. By the previous case
DAZ is balanced in (M;, p;) so

pi(e) < pi(DAZ — {e}) = pi(D) — pi(e1) — pi(e2) + pi(es) — pi(e) < pi(D — {e}).
Lastly, we have
pi(e1) < pies) + pi(es) < pi(ez) — pi(D — {e1,ea}) = pi(D — {e1})

and similarly p;(es) < pi(D — {e2}).

We have shown (M;, p;) is admissible, i = 1,2. By hypothesis (M;, p;) has a circuit cover L;, 1 = 1,2.
Each circuit in L; which intersects Z in 0 or 2 elements. For j = 1,2,3 we denote by Lg those circuits in
L; containing Z — {e; }. For any partition {j} U {k, £} of {1,2,3} we have |L¥| + |L{| = p1(e;) = pa(e;) =
|LE| + |LE|, and thus |L]| = |Li| = (p1(ex) + p1(er) —pi(e;))/2. Similarly to the 2-sum case, the circuits in
in L{ may be “paired off” with those in Lé, J =1,2,3in an obvious way to yield a circuit cover of (M, p).

Thus (M, p) has the circuit cover property. O

5 Good Matroids

It remains to show that each of the building blocks of the decomposition of Lemma 3.4 has the circuit

cover property. The first is due to Alspach, Goddyn and Zhang [1].
5.1 Lemma Graphic matroids containing no M(Pig) minor have the circuil cover property.

We define a partial order on the set of weightings of a matroid M. For p,q: M — Z we write p < ¢ if
p(e) < gq(e) for each e € M. A weighting (M, p) is positive if p(e) > 1 for all e € M. Let B be a cocircuit
in M and let e € B. We define the slack of (B,e) in (M, p) by

sl(B,e) =slp(B,e) :=p(B —¢e) — p(e).



Thus if (M, p) is admissible, then sl(B,e) is a nonnegative even integer. The following is convenient for

showing that a matroid has the circuit cover property.

5.2 Lemma Let M be a matroid such that M\e has the circuit cover property for alle € M. Suppose

further that, for any admissible positive weighting (M, p), there exisis a circuit C' such that for any cocircuit

B and e € B,
CnB ] C
sl(B,e) > | | feg (2)
|ICNB|—2 ifecC.

Then M has the circuit cover property.

PROOF. Suppose M satisfies the hypothesis, but does not have the circuit cover property. Let (M,p)
be a <-minimal admissible weighting which has no circuit cover. If p(e) = 0 for some e € M, then the
restriction (M \e, p) is admissible. By hypothesis (M \e, p) has a circuit cover. This circuit cover is also a
circuit cover of (M, p), a contradiction. Thus p is positive, whence there exists a circuit C' satisfying (2)
for every cocircuit B and e € B. Let p' := p—x©. Since (M, p) is eulerian and positive, (M, p') is eulerian
and nonnegative valued. For any SCFE(M) we have p/(S) = p(S) — |C' N S|, so (2) is equivalent to the
statement p'(e) < p'(B—e). Thus (M, p') is admissible and, by minimality of p, (M, p’) has a circuit cover.
Adjoining C' to this circuit cover yields a circuit cover of (M, p), a contradiction. Thus M has the circuit

cover property. O

5.3 Lemma The matroid F; has the circuit cover property.

ProoF. We check that F7 satisfies the hypothesis of Lemma 5.2. For any e € Fr, Fr\e = M(K4) which
has the circuit cover property by Lemma 5.1. Let (F7, p) be admissible and positive. Let a,b € F7 be such
that p(e) < p(b) < p(a) for all e € E — {a, b}, and let C' be the unique circuit of cardinality 3 containing a
and b. Let B be any cocircuit of F7 and let e € B. As |C'N B| is even and |C'| = 3, C'N B contains either
0 or 2 elements. Since sl(B,e) > 0, (2) holds unless e ¢ C and |C'N (B —¢e)| = 2. In this case e is different
from a and b. Every cocircuit of F7 has cardinality 4 so B — e contains 3 elements of positive weight. Since
|C'—B| = 1, one of these 3 elements is either a or b. We have sl(B,e) = p(B—e)—p(e) > (p(b)+2)—p(e) > 2
and (2) holds. Thus F7 has the circuit cover property. O

The following lemma completes the proof of the main theorem. It is the most involved single step in

its proof. The details are supplied in the next section.

5.4 Lemma The matroid M*(Vg) has the circuit cover property.

6 Bond covers of V5

To minimize confusion we use a separate terminology for graphs. A cycle in a graph G is the edge set of
a simple closed walk in G. An edge cut is the set §(X) of edges with exactly one endpoint in X for some
XCV(G). A bond is an minimal nonempty edge cut. We say that G has the bond cover property if M*(G)



has the circuit cover property. The graph Vs is obtained from the polygon vgegvier - - - egvrer by adding
the edges ega4, €15, €26, €37, Where each e;; has endpoints v; and v;. Each e; is called a rim edge whereas
each e;; is called a spoke. The automorphism group of Vg is the dihedral group of order 16. Our aim is to
show that Vg has the bond cover property.

If G is a plane graph then G has the bond cover property if and only if the polygon matroid of its
plane dual G* has the the circuit cover property. As planar graphs do not have Py as a minor, Lemma

2.3 implies the following.

6.1 Lemma FEvery planar graph has the bond cover property. O

Applying Lemmas 3.3 and 4.2, we have the following.

6.2 Lemma All proper minors of Vg have the bond cover property. O
As in Section 5, we define
sl(C,e) .= p(C —e) — ple)

for any cycle C' and e € C. We say that an edge weighted graph (G, p) is bond admissible if (M*(G),p) is
admissible. Thus p : F(G) — Z4 is bond admissible if for each cycle C and e € C, sl(C, €) is a non-negative
even integer. A cycle C'in (G, p) is balanced if sl(C,e) > 0 for all e € C, and is tight if sl(C, e) = 0 for some
e € C. Ifsl(C,e) =0, then e is called a leader of C. If G is simple and p is positive and bond admissible,
then each tight cycle in (G, p) has a unique leader. A chord of a cycle C'is an edge in E(G) — C such that
both its endpoints are incident with an edge in C. We recall that the symmetric difference of two cycles

in G is an edge-disjoint union of cycles in G.

6.3 Lemma Let p be a positive weighting of a graph G. Let C,C’ be cycles and e, f be edges in G such
thate € C—C" and f € CNC'. Let D be a cycle in CAC' containing e. Then sl(D,e) <sl(C,e)+sl(C’, f)
with equality if and only if D = CAC' and f is a chord of D.

ProOF. Let a = sl(C,e) and b = sl(C’, f). We have p(CAC'—e) = p(C—e— f)+p(C'— f)—2p(CNC'—f)

and so

ple) = p(C—e)—a=p(C—e—f)—a+p(f)
p(C—e—f)—a+p(C' —f)—b
(CAC —e)+2p(CNC' = f)—a—b
(D—¢)—a—b.

P
> p

Since p is positive, equality holds if and only if D = CAC’, and C N C’" = {f}. O
6.4 Corollary Let C be a cycle in G, e € C and let f be a chord of C. Let C. be the cycle in C'U {f}
containing both e and f, and let Cy be the cycle in C U{f} —{e}. Then for any edge-weighting p we have

sl(C,e) =sl(C.,e) + sl(Cy, f). O

10



For any edge weighting (Vs, p) we define the set of leaders
L = L(p) := {e € E(Vg) : e is the leader of some tight cycle in (Vg,p)}.

6.5 Lemma Let (Vs p) be positive and bond admissible. If |CNL| > 2 for some tight cycle C, then (Vs, p)

has a bond cover.

ProOOF. Let e, f € C'N L and assume that e is the (unique) leader of C'. Then f is the leader of some tight
cycle C different from C. Since p(f) < p(e), we have e ¢ C’. Let D be the cycle in CAC’ containing e.
As D is a balanced in (Vg,p), Lemma 6.3 gives 0 < sl(D,e) < sl(C,e) +sl(C’, f) = 0s0o D = CAC" is a
tight cycle and f is a chord of D.

Let z,y be the endpoints of f. Since every cycle in Vg\f is a cycle in Vs, (Vs\f,p) is bond admissible.
By Lemma 6.2, (Vz\f, p) has a bond cover L. Let L” be the sublist consisting of those bonds §(X) in L’
for which |X N {z,y}| = 1. Let L be the list of bonds in Vg obtained from L’ by adding the edge f = zy
to those bonds in L”. Since D is tight, each bond in L’ which contains e contains exactly one other edge

in D, so the number of bonds in L” is exactly p(C’ — f) = p(f). Thus L is a bond cover of (Vg, p). |

We say that a bond B in (Vg, p) is removable if (Vs, p— x?) is bond admissible. In particular, any bond
in a bond cover of (Vg,p) is removable. As in Lemma 5.2, if p is positive, then a bond B is removable if

and only if for any cycle C' and e € C,

IBNC| ife ¢ B
IBNC|-2 ife€ B.

sl(C,e) > {

We derive a sufficient condition, depending only on the leaders L(p), for a bond to be removable in (Vs, p).
A k-cycle 1s a cycle of cardinality k.

6.6 Lemma Let (Vs,p) be positive and bond admissible. Then a bond B is removable provided all of the
following hold.

1. LCRB
2. For every 4-cycle C' contained in B, we have |CNL| > 2.

3. For every 5-cycle C such that |C N B| =4, we have |CNL| > 2 and there exists f € CN L such that
every chordless cycle C' containing f satisfies |C' N (C' U L)| > 2.

PrROOF. Suppose that B is not removable, but that 1., 2., and 3. hold. Let p’ = p — x®. Then some cycle
is unbalanced in (Vs,p'). Applying Corollary 6.4, there exists an unbalanced cycle C in (Vg,p’) which is
chordless. Since every cycle in V3 having cardinality greater than five has a chord, we have 4 < |C| < 5.
Since C is balanced in (Vg, p) but not in (Vg,p'), |[BNC| equals either 2 or 4. If |BNC| = 2, then C is tight
in (Vg,p) and B does not contain the leader of C, contradicting 7. Thus we have 4 = |C'N B| < |C] < 5.
By 2. and 3., |[CNL| > 2. If C were tight in (Vg,p), then (Vs, p) would have a removable bond by Lemma
6.5. Thus C'is not tight in (Vs, p) whereas C' is unbalanced in (Vg, p'). Since |C| < 5 this can happen only

11



if |C| = 5 and, for some e € C, C — B = {e} and sl,(C,e) = 2. Let f € C'N L be the edge specified in
condition 3. Applying Corollary 6.4, f is a leader of some chordless tight cycle C’. Since f € C'NCN L,
condition 4. implies that either |C'NC| > 2 or |C' N L| > 2. Applying Lemma 6.5 to C’, we may assume
|C'N Ll =1 and thus |C'NC| > 2. If e € ', then p(f) = p(C" — f) > p(e) = p(C —€) =2 > p(f) — 2
which is absurd. Therefore e € C' — C’" and f € C N C’. Let D be the cycle in CAC’ which contains e.
Applying Lemma 6.3 to (Vs, p), we have sl(D,e) <sl(C,e) +sl(C’, f) = 2+ 0. Since |C'NC| > 2, we do
not have equality here, whence sl(D,e) = 0. Thus e € L. — B, contradicting 1. m]

A matching is a set of edges such that no two are adjacent.

6.7 Lemma Let (Vs,p) be positive and bond admissible. If L is not a matching of cardinality at least two,

then Vg has a removable bond.

ProOOF. Let v € V(Vg). Every cycle intersects the star-bond é(v) in at most two edges. Therefore if §(v)
is not removable, then there exists a tight cycle C' in (Vg, p) which intersects §(v) but whose leader is not
contained in é(v). Since v is arbitrary, we have |L| > 2. Furthermore, if v is incident with at least two
edges in L, then one of these two edges is in C, since v has degree three. Thus |C'N L| > 2 and by Lemma
6.5, (Vs,p) has a bond cover. O

We now complete the proof of Theorem 5.4. By Lemmas 5.2 and 6.2 1t suffices to show the existence of
a removable bond in any positive, bond admissible weighting (Vs, p). By Lemma 6.7 we may assume that
L(p) is a matching of cardinality at least two. For SCE(Vg) we denote by [S] the orbit of S under the
group of automorphisms of Vz. Referring to Figure 1, we claim that for any matching L in Vs with |L| > 2,
there is a bond B in either [B1], [Ba], [Bs] or [Ba] satisfying conditions 1., 2., and 3. of Lemma 6.6. We
note that condition 2. is vacuously true for By, B3 and By, and that condition 3. is vacuously true for By,

32 and Bg.

If L contains no rim edges and |L| < 3, then some bond in [B;] contains L, and thus satisfies 1., 2.,
and 3. If L consists of all four spokes in Vg, then By satisfies the three conditions. If L contains exactly
one rim edge then, since L is a matching, some bond in [B;] contains L and is therefore removable. If L
contains exactly two rim edges and these two edges are at distance 3 (4) along the rim of Vg, then some
bond in [B] ([B2]) again satisfies the three conditions, and hence is removable. If L contains exactly two
edges at distance 2 along the rim of Vg then, since L is a matching, |L| = 2 and a bond in [Bs] contains
L and thus satisfies the three conditions. If I contains 3 or 4 rim edges, then L contains no spokes since
L is a matching. If LC B3, then Bj is removable so we may assume that L = {eg, es,e5}. We claim that
B, is removable in this case. In this case condition 3. must be checked with C' = {es, €3, €4, €5, €26 }; here
e5 serves as the required edge f. In all cases, there is a removable bond in Vg, and thus V3 has the bond

cover property.
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Figure 1: Four bonds in Vg

7 Remarks

Remark 2.2 provides a good reason that none of F}, Rig, M*(Kj5) has the circuit cover property; each
of these matroids has an admissible weighting which does not even have a “fractional” circuit cover.
This suggests that the admissibility conditions, 1.1, 1.2, 1.3, should be replaced with stronger ones. Let
C = C(M) denote the set of circuits in matroid M. Let @4 denote the non-negative rational numbers. For

any matroid M we define the lattice, the cone and the integer cone of circuits in M by

2(¢) = {Z acx® i ac €7 for all C € C}
cecC
Qe(C) = {D acx®:aceQy forall Cec}
ceC
2,(C) = {>_ acx®:ac€ly forall CecC}
ceC

Thus (M, p) has a circuit cover if and only if p € Z(C). For any matroid,
Z,(C)CQ4(C)NZ(C).

If equality holds here, then we say that C forms a Hilbert base. Let H denote the class of matroids whose

circuits form a Hilbert base. The following problem is raised in [5].

7.1 Problem Characterize the matroids in H.
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Tt is known (see [5, 10]) that for any binary matroid M with no F7 minor, a weighting p : M — Z belongs
to Z(M) if and only if 1.2 holds for all cocircuits B and 1.3 holds for all cocircuits B with |B| < 2. Seymour
[13] showed that, for all binary matroids with no F}, Rig or M*(K5) minor, a weighting p : M — Q4
belongs to @4 (M) if and only if 1.3 holds for all cocircuits B. Thus our main theorem partially answers

the above problem.

7.2 Corollary Let M be a binary matroid with no F}, Rig or M*(K5) minor. Then M € H if and only
if M has no M(Pyo) minor. 0

If M contains a F}, Rig or M*(K5) minor, then our main theorem is no longer relevant since the cone
of circuits of M is strictly contained in cone of non-negative weights p satisfying 1.3. Indeed, it is N'P-
hard to determine whether p € Q4 (M), even if M is cographic [7]. Some further progress has been made
on Problem 7.1. For example, the dual of any projective geometry PG(n,q) (including F# = PG*(2,2))
belongs to H since its circuits are linearly independent in @F. It follows from matroid partition theory
(see [2]) that the bases of a matroid form a Hilbert base, and hence all uniform matroids belong to H.
M. Laurent [9] has shown that H contains every proper minor of M*(Kg) whereas no cographic matroid

containing an M*(Kg) minor is in . As far we know, the following problem is open.

7.3 Problem Is the class of cographic matroids in ‘H closed under taking minors?
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