Problem \#jh06.1

(This is part of Math 252 Homework \#06, due Friday March 5th, 1999.)
Maxwell's equations in a vacuum (in the absence of any charges or currents) are given by:

$$
\begin{aligned}
& \vec{\nabla} \bullet \overrightarrow{\mathbf{E}}=0 \\
& \vec{\nabla} \bullet \overrightarrow{\mathbf{B}}=0 \\
& \vec{\nabla} \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
& \vec{\nabla} \times \overrightarrow{\mathbf{B}}=\frac{1}{c^{2}} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}
\end{aligned}
$$

(a) Show that $\overrightarrow{\mathbf{E}}$ satisfies the wave equation:

$$
\vec{\nabla}^{2} \overrightarrow{\mathbf{E}}=\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{\mathbf{E}}}{\partial t^{2}}
$$

(b) Show that $\overrightarrow{\mathbf{B}}$ also satisfies the wave equation:

$$
\vec{\nabla}^{2} \overrightarrow{\mathbf{B}}=\frac{1}{c^{2}} \frac{\partial^{2} \overrightarrow{\mathbf{B}}}{\partial t^{2}}
$$

Assume:

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}=[A \cos (\omega t-\overrightarrow{\mathbf{k}} \bullet \overrightarrow{\mathbf{R}})+B \sin (\omega t-\overrightarrow{\mathbf{k}} \bullet \overrightarrow{\mathbf{R}})] \hat{\mathbf{u}}_{E} \\
& \overrightarrow{\mathbf{B}}=[C \cos (\omega t-\overrightarrow{\mathbf{k}} \bullet \overrightarrow{\mathbf{R}})+D \sin (\omega t-\overrightarrow{\mathbf{k}} \bullet \overrightarrow{\mathbf{R}})] \hat{\mathbf{u}}_{B}
\end{aligned}
$$

where $\hat{\mathbf{u}}_{E}$ and $\hat{\mathbf{u}}_{B}$ are suitable unit vectors, $\overrightarrow{\mathbf{R}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}, \omega$ is a constant, $\overrightarrow{\mathbf{k}}$ is a constant vector, and A, B, C, and D are constants.
(c) Show $\overrightarrow{\mathbf{k}} \perp \hat{\mathbf{u}}_{E}$
(d) Show $\overrightarrow{\mathbf{k}} \perp \hat{\mathbf{u}}_{B}$
(e) Show $\hat{\mathbf{u}}_{E} \perp \hat{\mathbf{u}}_{B}$
(f) Find a relation between A and C.
(g) Find a relation between B and D.
[Don't get $\overrightarrow{\mathbf{k}}$ confused with $\hat{\mathbf{k}}$. The former is the wave propagation vector, with a magnitude of $2 \pi / \lambda$, whereas the latter is the unit vector parallel to the z axis.]

