Math 252 HW#07 sec. 4.6 #8 Maple Work

We start by loading the "linalg" package:

  with(linalg):

Part (a):

  Rphi:=a*vector([cos(phi)*cos(theta),cos(phi)*sin(theta),-sin(phi)]);
   Rphi := a [cos(phi) cos(theta), cos(phi) sin(theta), -sin(phi)]
  Rtheta:=a*vector([-sin(phi)*sin(theta),sin(phi)*cos(theta),0]);
      Rtheta := a [-sin(phi) sin(theta), sin(phi) cos(theta), 0]
  dSvec:=crossprod(Rphi,Rtheta);
         [ 2         2              2         2
dSvec := [a  sin(phi)  cos(theta), a  sin(phi)  sin(theta),

     2                    2
    a  cos(phi) cos(theta)  sin(phi)

        2                    2         ]
     + a  cos(phi) sin(theta)  sin(phi)]
The first two components are the same as those of eq. (4.30). Let us simplify the third component:
  simplify(dSvec[3]);
                          2
                         a  cos(phi) sin(phi)
The third component now agrees with that of eq. (4.30), confirming the equation.


Part (b):

  simplify(dSvec[1]^2+dSvec[2]^2+dSvec[3]^2);
                           4    4         2
                          a  - a  cos(phi)
Noting that noting that 1 - cos^2 = sin^2, this is the same as eq. (4.31), thereby confirming the equation.


SFU / Math & Stats / ~hebron / math252 / assignments / sol07 / maple / 4.6.8.html

Revised 22 March 1999 by John Hebron.