Math 252 HW#08 sec. 4.7 #12 Maple Work

We start by loading the "plots" package:

> with(plots):

> r:=2+cos(theta);

[Maple Math]

Let us plot the surface of the cylinder under consideration:

> plot3d([r,theta,z],theta=0..2*Pi,z=0..(2+cos(theta)), coords='cylindrical',scaling='CONSTRAINED',
axes='FRAMED',labels=['x','y','z'],orientation=[-80,60]);

[Maple Plot]

This is the surface which is integrated over, and is therefore the only surface which we really need to plot. However, just for the sake of curiosity, let's see what the inner cone looks like:

> plot3d([z,theta,z],theta=0..2*Pi,z=0..(2+cos(theta)), coords='cylindrical',scaling='CONSTRAINED',
axes='FRAMED',labels=['x','y','z'],orientation=[-80,60]);

[Maple Plot]

Now, let's see what the two surfaces look like when plotted together:

> plot1:=plot3d([r,theta,z],theta=0..2*Pi,z=0..(2+cos(theta)), coords='cylindrical',scaling='CONSTRAINED',
axes='FRAMED',labels=['x','y','z'],orientation=[-80,60]):

> plot2:=plot3d([z,theta,z],theta=0..2*Pi,z=0..(2+cos(theta)), coords='cylindrical',scaling='CONSTRAINED',
axes='FRAMED',labels=['x','y','z'],orientation=[-80,60]):

> display({plot1,plot2});

[Maple Plot]


SFU / Math & Stats / ~hebron / math252 / assignments / sol08 / maple / 4.7.12.html

Revised 24 March 1999 by John Hebron.