Math 252, Vector Calculus J. Hebron, Spring 1999 Mid-Term Examination

Wednesday, Feb 17th, 1999

Marks

[10]

[3]

[5]

1. Prove, using tensor notation, the following vector identity:

 $\vec{\mathbf{F}} \times (\vec{\mathbf{F}} \times \vec{\mathbf{G}}) = (\vec{\mathbf{G}} \cdot \vec{\mathbf{J}})\vec{\mathbf{F}} - (\vec{\mathbf{F}} \cdot \vec{\mathbf{J}})\vec{\mathbf{G}} + (\vec{\mathbf{F}} \cdot \vec{\mathbf{G}})\vec{\mathbf{F}} - (\vec{\mathbf{F}} \cdot \vec{\mathbf{F}})\vec{\mathbf{G}}$

2. Evaluate the following:

$$\vec{x} = \frac{x^3 y \sqrt{z} + e^{xy} \cos(yz) - \tanh^{-1} \frac{x}{y}}{\ln(x^2 + z^2) + 3xz^{\frac{4}{3}}y^{\cos(x)}}$$

3. What is $\mathbf{\vec{F}}$ when written as a dyadic?

4. Let $f(x, y, z) = \sin(px)\sinh(qy)e^{rz}$ where p, q, and r are constant. What are the necessary conditions on p, q, and r to make f(x, y, z) satisfy Laplace's equation? [10]

5. Let
$$\vec{\mathbf{F}} = yz\vec{\mathbf{i}} + xz\vec{\mathbf{j}} + xy\vec{\mathbf{k}}$$

- (a) What is $\vec{\cdot} \cdot \vec{F}$? [2]
- (b) What is $\vec{\mathbf{F}}$? [3]
- (c) What are the equations for the flow lines of $\vec{\mathbf{F}}$ going through the point (x_o, y_o, z_o) ? [5]

6. Find the equation of a plane tangent to the surface $z = x^2 + y^2$ at the point (3,4,25). [10]

7. Consider the space curve defined by the following:

$$x = e^{t} \cos t$$
$$y = e^{t} \sin t$$
$$z = 0$$

and assume there is a particle moving along this curve as a function of time t.

(a) What is the speed?	[2]
(b) What is the tangential component of acceleration?	[2]
(c) What is the normal component of acceleration?	[2]
(d) What is the unit tangent vector $\vec{\mathbf{T}}$?	[2]
(e) What is the curvature of the curve?	[2]
(f) What is the torsion of the curve?	[2]
	Total mark out of [60]