MATHEMATICS 151

Assignment 4, due Wednesday 07 July 1999

Section 2.1 (pg. 121):
6. $f(t)=2 t^{3}-t+1 ; f(2+h)=2(2+h)^{3}-(2+h)+1=2 h^{3}+12 h^{2}+23 h+15$ and $f(2)=15$. Then $\frac{f(2+h)-f(2)}{h}=\frac{\left(2 h^{3}+12 h^{2}+23 h+15\right)-15}{h}=\frac{2 h^{3}+12 h^{2}+23 h}{h}=$ $=2 h^{2}+12 h+23$, if $h \neq 0$. Here time t is measured in seconds, distance s is measured in metres, and velocity is measured in metres per second. If $g(t)$ is the average velocity from 2 to $t, g(2+h)=2 h^{2}+12 h+23$, and the instantaneous velocity at $t=2$ is $\lim _{h \rightarrow 0}\left(2 h^{2}+12 h+23\right)=23$.
10. $f(x)=\frac{x}{x^{2}-1}$, so $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{\frac{x}{x^{2}-1}-\frac{a}{a^{2}-1}}{x-a}=\lim _{x \rightarrow a} \frac{(a x+1)(a-x)}{(x-a)\left(x^{2}-1\right)\left(a^{2}-1\right)}=$ $=\lim _{x \rightarrow a} \frac{-(a x+1)}{\left(x^{2}-1\right)\left(a^{2}-1\right)}=-\frac{a^{2}+1}{\left(a^{2}-1\right)^{2}}$.
Alternatively $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\frac{a+h}{(a+h)^{2}-1}-\frac{a}{a^{2}-1}}{h}=\lim _{h \rightarrow 0} \frac{-[a(a+h)+1] h}{h\left[(a+h)^{2}-1\right]\left[a^{2}-1\right]}=$ $=\lim _{h \rightarrow 0} \frac{-[a(a+h)+1]}{\left[(a+h)^{2}-1\right]\left[a^{2}-1\right]}=-\frac{a^{2}+1}{\left(a^{2}-1\right)^{2}}$.
12. $f(x)=\sqrt{x-1}$. Note $x-a=[x-1]-[a-1]=[\sqrt{x-1}-\sqrt{a-1}][\sqrt{x-1}+\sqrt{a-1}]$.

So $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{\sqrt{x-1}-\sqrt{a-1}}{x-a}=\lim _{x \rightarrow a} \frac{1}{\sqrt{x-1}+\sqrt{a-1}}=\frac{1}{2 \sqrt{a-1}}$.
Alternatively $h=[a+h-1]-[a-1]=[\sqrt{a+h-1}-\sqrt{a-1}][\sqrt{a+h-1}+\sqrt{a-1}]$.
So $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\sqrt{a+h-1}-\sqrt{a-1}}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{a+h-1}+\sqrt{a-1}}=\frac{1}{2 \sqrt{a-1}}$
14. $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{3}-2^{3}}{h}=f^{\prime}(2)$, where $f(x)=x^{3}$.
16. $\lim _{x \rightarrow 3 \pi} \frac{\cos x+1}{x-3 \pi}=\lim _{x \rightarrow 3 \pi} \frac{\cos x-\cos (3 \pi)}{x-3 \pi}=f^{\prime}(3 \pi)$, where $f(x)=\cos x$.
18. $\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{3^{x}-3^{0}}{x-0}=f^{\prime}(0)$, where $f(x)=3^{x}$.
54. If x is between integers, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\llbracket x+h \rrbracket-\llbracket x \rrbracket}{h}=\lim _{h \rightarrow 0} 0=0$ since $\llbracket x+h \rrbracket$ and $\llbracket x \rrbracket$ are the same when h is small enough. But if x is an integer, $\llbracket x+h \rrbracket=x-1$ if $h<0$ and h is numerically small enough, $[x+h \rrbracket=x$ if $h>0$ and h is numerically small enough, and $\llbracket x \rrbracket=x$. Thus
$\lim _{h \rightarrow 0^{+}} \frac{\llbracket x+h \rrbracket-\llbracket x \rrbracket}{h}=\lim _{h \rightarrow 0^{+}} \frac{x-x}{h}=\lim _{h \rightarrow 0^{+}} \frac{0}{h}=0$, and
$\lim _{h \rightarrow 0^{-}} \frac{\llbracket x+h \rrbracket-\llbracket x \rrbracket}{h}=\lim _{h \rightarrow 0^{-}} \frac{(x-1)-x}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}$
does not exist, so $f^{\prime}(x)$ does not exist when x

For Exercise 54 is an integer; $f^{\prime}(x)=0$ with domain the set of all real numbers that are not integers.
56. $g(x)= \begin{cases}\frac{x^{3}-x}{x^{2}+x} & \text { if } x<1 \text { and } x \neq 0 \\ 0 & \text { if } x=0 \\ 1-x & \text { if } x \geq 1\end{cases}$
$g(-1)$ is undefined.
$\lim _{x \rightarrow-1} \frac{x^{3}-x}{x^{2}+x}=\lim _{x \rightarrow-1} \frac{x(x+1)(x-1)}{x(x+1)}=\lim _{x \rightarrow-1}(x-1)=-2$.
So g has a removable discontinuity at -1 .
$\lim _{x \rightarrow 0} \frac{x^{3}-x}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{x(x+1)(x-1)}{x(x+1)}=\lim _{x \rightarrow 0}(x-1)=-1 \neq g(0)$.
So g is discontinuous, hence not differentiable, at 0 .
$\lim _{x \rightarrow 1^{-}} \frac{x^{3}-x}{x^{2}+x}=\lim _{x \rightarrow 1^{-}} \frac{x(x+1)(x-1)}{x(x+1)}=\lim _{x \rightarrow 1^{-}}(x-1)=0$.

For Exercise 56
$\lim _{x \rightarrow 1^{+}}(1-x)=0$ and $g(1)=0$ also, so g is continuous at 1 .
Since $g(x)=x-1$ on $(-\infty,-1) \cup(-1,0) \cup(0,1), g^{\prime}(x)=1$ there.
Likewise since $g(x)=1-x$ on $(1,+\infty), g^{\prime}(x)=-1$ there. But what about $g^{\prime}(1)$?
$\lim _{h \rightarrow 0^{-}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[(1+h)-1]-[1-1]}{h}=\lim _{h \rightarrow 0^{-}} 1=1$.
On the other hand, $\lim _{h \rightarrow 0^{+}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{[1-(1+h)]-[1-1]}{h}=\lim _{h \rightarrow 0^{+}}(-1)=-1$.
So $g^{\prime}(1)$ does not exist, and g is not differentiable at 1.
g has a "left-hand derivative" $g_{-}^{\prime}(1)=\lim _{h \rightarrow 0^{-}} \frac{g(1+h)-g(1)}{h}=1$ and a "right-hand derivative" $g_{+}^{\prime}(1)=\lim _{h \rightarrow 0^{+}} \frac{g(1+h)-g(1)}{h}=-1$. See graph above and to the right.
60. $f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0}\left(h \sin \frac{1}{h}\right)=0$ because $-1 \leq \sin \frac{1}{h} \leq 1$, which makes $h \sin \frac{1}{h}$ at least as close to 0 as h itself is.

Section 2.2 (pg. 132):

2. If $g(x)=x^{100}+50 x+1$, then $g^{\prime}(x)=100 x^{99}+50$.
3. If $G(y)=\left(y^{2}+1\right)(2 y-7)$ then $G^{\prime}(y)=2 y(2 y-7)+\left(y^{2}+1\right)(2)=6 y^{2}-14 y+2$. Alternatively, $G(y)=2 y^{3}-7 y^{2}+2 y-7$ so $G^{\prime}(y)=6 y^{2}-14 y+2$.
4. If $f(u)=\frac{1-u^{2}}{1+u^{2}}$ then $f^{\prime}(u)=\frac{\left(1+u^{2}\right)(-2 u)-\left(1-u^{2}\right)(2 u)}{\left(1+u^{2}\right)^{2}}=-\frac{4 u}{\left(1+u^{2}\right)^{2}}$.
5. If $y=x^{4 / 3}-x^{2 / 3}$ then $y^{\prime}=\frac{4}{3} x^{1 / 3}-\frac{2}{3} x^{-1 / 3}$.
6. $y=x^{5 / 2}$ so $y^{\prime}=\frac{5}{2} x^{3 / 2}$ and $y^{\prime}(4)=20$.

The tangent line has equation $y-32=20(x-4)$, or $y=20 x-48$.
46. $f(x)=2 x^{3}-3 x^{2}-6 x+87$.

So $f^{\prime}(x)=6 x^{2}-6 x-6=6\left(x^{2}-x-1\right)=6\left(x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)$.
The graph has horizontal tangents at $\left(\frac{1 \pm \sqrt{5}}{2}, \frac{167 \mp 5 \sqrt{5}}{2}\right)$.
64. $y=(x+5)\left(x^{2}+7\right)(x-3)$.
$y^{\prime}=(1)\left(x^{2}+7\right)(x-3)+(x+5)(2 x)(x-3)+(x+5)\left(x^{2}+7\right)(1)=4 x^{3}+6 x^{2}-16 x+14$.
Checking, $y=x^{4}+2 x^{3}-8 x^{2}+14 x-105$ so $y^{\prime}=4 x^{3}+6 x^{2}-16 x+14$.
66. $y=\left(x^{4}+3 x^{3}+17 x+82\right)^{3}$, so $y^{\prime}=3\left(x^{4}+3 x^{3}+17 x+82\right)^{2}\left(4 x^{3}+9 x^{2}+17\right)$.

You can expand y and check by differentiating directly yourself.
68. $g(x)=\left\{\begin{array}{cl}-1-2 x & \text { if }-\infty<x<-1 \\ x^{2} & \text { if }-1 \leq x \leq 1 \\ x & \text { if } 1<x<+\infty\end{array}\right.$ $\lim _{x \rightarrow-1^{-}} g(x)=\lim _{x \rightarrow-1^{-}}(-1-2 x)=1$, $\lim _{x \rightarrow-1^{+}} g(x)=\lim _{x \rightarrow-1^{+}} x^{2}=1$, and $g(-1)=1$, so g is continuous at -1 .
Also $\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1$,
$\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} x=1$, and $g(1)=1$,
so g is continuous at 1 .
Clearly g is continuous and differentiable

For Exercise 68 everywhere in $(-\infty,-1) \cup(-1,1) \cup(1,+\infty)$, since on each of these three intervals it coincides with a known differentiable function $-1-2 x, x^{2}$, or x.
See graph of $y=g(x)$ above and to the right.
Now we must check differentiability at -1 and at 1 , by evaluating left-hand and righthand limits separately, using the definition of derivative.
$\lim _{h \rightarrow 0^{-}} \frac{g(-1+h)-g(-1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{[-1-2(-1+h)]-[-1]^{2}}{h}=\lim _{h \rightarrow 0^{-}} \frac{-2 h}{h}=-2$, and
$\lim _{h \rightarrow 0^{+}} \frac{g(-1+h)-g(-1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(-1+h)^{2}-(-1)^{2}}{h}=\lim _{h \rightarrow 0^{+}} \frac{-2 h+h^{2}}{h}=\lim _{h \rightarrow 0^{+}}(h-2)=-2$ also,
so $g^{\prime}(-1)$ does exist, and $g^{\prime}(-1)=-2$.
$\lim _{h \rightarrow 0^{-}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(1+h)^{2}-1^{2}}{h}=\lim _{h \rightarrow 0^{-}} \frac{2 h+h^{2}}{h}=\lim _{h \rightarrow 0^{-}}(2+h)=2$, while
$\lim _{h \rightarrow 0^{+}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(1+h)-1^{2}}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1$,
so $g^{\prime}(1)$ does not exist.
Thus $g^{\prime}(x)=\left\{\begin{array}{rlr}-2 & \text { if } & -\infty<x<-1 \\ -2 & \text { if } & x=-1 \\ 2 x & \text { if } & -1<x<1 \\ 1 & \text { if } & 1<x<+\infty\end{array}\right.$
See graph of $y=g^{\prime}(x)$ to the right.
The function $g^{\prime}(x)$ has a serious discontinuity at $x=1$;
it is not a removable discontinuity since its left- and right-

For Exercise 68 hand limits there disagree. This corresponds to the "corner" on the graph of $g(x)$ at $(1,1)$; notice there is no corner at $(-1,1)$.

