MATHEMATICS 151

Assignment 7, due Friday 16 July 1999

Section 2.9 (pg. 180):

(a) If 1 = 24 cm and d1 = 0.2 cm then dA = 3.0 = 30.10 cm. (The maximum endication of a bit more than this; $A = (24.2^2 - 24^2) = 9.64$ = 30.28495318 cm².) (b) The relative error is $\frac{dA}{A} = \frac{9.6}{576} = \frac{1}{60}$ = 0.0166666667. Notice that the relative error in radius is $\frac{0.2}{24} = \frac{1}{120}$, so the relative error in area is exactly twice the relative error in radius. Can you explain why that **had** to be the case?

30. $V = \frac{2}{3} r^3$; r = 25 m and dr = 0.05 cm = 0.0005m, so $dV = 2 r^2 dr = \frac{5}{8}$ or about 1.963 m³.

4. If $x^3 + x^2 + 2 = 0$, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{2x_n^3 + x_n^2 - 2}{3x_n^2 + 2x_n}$. If $x_1 = -2$, $x_2 = -1.75$, $x_3 = -1.6978021978$, $x_4 = -1.6956244765$, $x_5 = -1.6956207696$, and $x_6 = -1.6956207696$ also. From here on, any changes have to be after the 10th decimal place.

6. If
$$x^7 - 100 = 0$$
, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{6x_n^7 + 100}{7x_n^6}$.

If $x_1 = 2$, $x_2 = 1.9375$, $x_3 = 1.9307689564$, $x_4 = 1.9306977368$, $x_5 = 1.9306977289$, and $x_6 = 1.9306977289$ also. The nth root function on my Texas Instruments TI–36 calculator also gives $\sqrt[7]{100} = 1.9306977289$. The *Maple* program on my Macintosh computer gives $\sqrt[7]{100} = 1.9306977288832501670$, to 20 significant figures (more for the asking).

10. If
$$x^4 + x^3 - 22x^2 - 2x + 41 = 0$$
, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{3x^4 + 2x^3 - 22x^2 - 41}{4x^3 + 3x^2 - 44x - 2}$.

f(1) = 19 and f(2) = -27 so linear interpolation (pretending the graph is straight) leads to a first guess of about 1.4 for a root, since 27 is about 1.5-19. Of course you could try a different x_1 ; this time Newton's Method works for any x_1 in the interval [1, 2]. $x_1 = 1.4$, x_2 1.435632381, x_3 1.435476098, x_4 1.435476095, x_5 1.435476095 gets the answer quickly to 10 decimal places. Starting with $x_1 = 1$ only takes one step longer. Starting with $x_1 = 2$ surprisingly is almost as fast as starting with $x_1 = 1.4$. If you plot f(x) (using *Maple*, for instance) over the interval -1 x 3.5 you will see why this works so well.

12. Let $f(x) = \tan x - x$. Note $f'(x) = \sec^2 x - 1 = \tan^2 x$ 0, so f(x) is increasing in (/2, 3/2). Since $f(4/3) = \sqrt{3} - 4/3 < 0$ while $\lim_{x \to 3/2^{-}} f(x) = +$, there is a root for the equation f(x) = 0 between 4/3 4.188790205 and 3/2 4.712388980. Using $x_1 = 4.5$ and $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\tan x_n - x_n}{\tan^2 x_n} = \frac{x_n - (\sin x_n)(\cos x_n)}{\sin^2 x_n}$, x_2 4.4936139028, x_3 4.4934096550, x_4 4.4934094579, and x_5 4.4934094579 also.

18. Note $\frac{d}{dx}\sin(x) = \cos(x)$, which is (1/2, 1) y = xwhen x = 0, so the graph of y = sin(x) is steeper at the origin than that of y = x. After the peak at (1/2, 1), y = sin(x)drops while y = x rises and the two graphs cross before x = 1 (since when x = 1, (0, 0) sin(x) = 0). After that, y = x rises above y = 1, and y = sin(x) can never get larger y = sin(x)than 1. So there is a unique positive root for the equation sin(x) = x between 1/2 and 1. (A good guess for it would be 0.75.) By symmetry there is a unique negative root (-1/2, -1)between -1 and -1/2. And of course there is the root at x = 0. If f(x) = sin(x) - x and $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{sin(x_n) - x_n}{cos(x_n) - 1} = \frac{x_n cos(x_n) - sin(x_n)}{cos(x_n) - 1}$, for $x_1 = 0.75$ we have $x_2 = 0.7366850852$, $x_3 = 0.7364844950$, $x_4 = 0.7364844482$, and x_5 0.7364844482. So the roots are x = 0 and $x \pm 0.7364844482$. See graph above and to the right.

24. (a) Let
$$f(x) = \frac{1}{x} - a$$
. Then $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\frac{1}{x_n} - a}{-\frac{1}{x_n^2}} = 2x_n - ax_n^2$.

(b) Since $\frac{1}{1.6984}$ is approximately 0.6, a good choice for x_1 is $x_1 = 0.6$. Then x_2 0.5885760000, x_3 0.5887893715, x_4 0.5887894489, and x_5 0.5887894489. So $\frac{1}{1.6984}$ 0.5887894489. My TI-36 approximates $\frac{1}{1.6984}$ as 0.5887894489, as well.

Section 3.1 (pg. 200):

- 6. See graph to the right.
- **14.** $\lim_{x \to -\infty} 1.1^{x} = 0$, since 1.1 > 1.
- **18.** $\lim_{x \to -\infty} \frac{e^{3x} e^{-3x}}{e^{3x} + e^{-3x}} = \lim_{x \to -\infty} \frac{e^{6x} 1}{e^{6x} + 1} = -1.$

26. On the next page are are tabulated values of $\frac{2.7^{h}-1}{h}$ and $\frac{2.8^{h}-1}{h}$ obtained by using a TI–36 calculator and rounding the results off to 5 decimal places.

h	1	0.1	0.01	0.001	0.0001	0.00001
<u>2.7^h – 1</u> h	1.70000	1.04425	0.99820	0.99375	0.99330	0.99326
<u>2.8^h – 1</u> h	1.80000	1.08449	1.03494	1.03015	1.02967	1.02962
h	– 1	– 0.1	- 0.01	-0.001	-0.0001	- 0.00001
<u>2.7^h – 1</u> h	0.62963	0.94552	0.98834	0.99276	0.99320	0.99325
<u>2.8^h – 1</u> h	0.64286	0.97839	1.02437	1.02909	1.02957	1.02961

Apparently, to two decimal places, $\lim_{h \to 0} \frac{2.7^{h} - 1}{h}$ 0.99 and $\lim_{h \to 0} \frac{2.8^{h} - 1}{h}$ 1.03. This tells us that e lies between 2.7 and 2.8, probably closer to 2.7.

28. If
$$f(x) = xe^{-x^2}$$
, then $f'(x) = 1 \cdot e^{-x^2} + x \cdot [e^{-x^2} \cdot (-2x)] = (1 - 2x^2)e^{-x^2}$

32. If $h() = e^{\sin(5)}$, $h'() = 5\cos(5)e^{\sin(5)}$.

38. If
$$y = \sqrt[3]{2x + e^{3x}} = (2x + e^{3x})^{1/3}$$
, $y' = \frac{1}{3}(2x + e^{3x})^{-2/3}(2 + 3e^{3x}) = \frac{2 + 3e^{3x}}{3\sqrt[3]{(2x + 3^3x)^2}}$

42. If $y = \sec(e^{\tan(x^2)})$, $y' = 2 \operatorname{xsec}^2(x^2) e^{\tan(x^2)} \sec(e^{\tan(x^2)}) \tan(e^{\tan(x^2)})$.

48. If $y = Ae^{-x} + Bxe^{-x} = (A + Bx)e^{-x}$, then using the product and chain rules, $y' = [B + (A + Bx)(-1)]e^{-x} = [(B - A) - Bx]e^{-x}$. Likewise $y'' = \{-B + [(B - A) - Bx](-1)\}e^{-x} = [(A - 2B) + Bx]e^{-x}$. So $y'' + 2y' + y = [(A - 2B) + Bx]e^{-x} + 2[(B - A) - Bx]e^{-x} + (A + Bx)e^{-x} =$ $= \{[(A - 2B) + 2(B - A) + A] + [Bx - 2Bx + Bx]\}e^{-x} = 0$.

52. If $f(x) = xe^{-x}$ then $f'(x) = [1 + x \cdot (-1)]e^{-x} = [1 - x]e^{-x}$ (product and chain rules). Then $f''(x) = [(-1) + (1 - x) \cdot (-1)]e^{-x} = [-2 + x]e^{-x}$. Likewise $f'''(x) = [1 + (-2 + x) \cdot (-1)]e^{-x} = [3 - x]e^{-x}$. So it appears that $f^{(n)}(x) = [(-1)^{n+1}n + (-1)^nx]e^{-x} = (-1)^n(x - n)e^{-x}$. Students familiar with Mathematical Induction (Appendix E in the text) can verify this. The formula certainly is true when n = 0 and when n = 1. If it is true when n = k, so that $f^{(k)}(x) = (-1)^k(x - n)e^{-x}$, by the product and chain rules that will make $f^{(k+1)}(x) = (-1)^k[1 + (x - n) \cdot (-1)]e^{-x} = (-1)^{k+1}[x - (n + 1)]e^{-x}$. In other words, if the formula is ever true, it will be true the next time too. Since it is true at the beginning (n = 0), it stays true forever. That makes $f^{(1000)}(x) = (x - 1000)e^{-x}$.