MATHEMATICS 151

Assignment 7, due Friday 16 July 1999

Section 2.9 (pg. 180):

4. If $y=\frac{x-2}{2 x+3}$ then $d y=\frac{(2 x+3) \cdot 1-(x-2) \cdot 2}{(2 x+3)^{2}} d x=$ $=\frac{7}{(2 x+3)^{2}} \mathrm{dx}$.
5. If $y=x(\tan x)$ then $d y=\left[x\left(\sec ^{2} x\right)+\tan x\right] d x$.
6. If $y=\sqrt{1-x}$, then
$d y=-\frac{1}{2 \sqrt{1-x}} d x$, so if $x=0$ and $\mathrm{dx}=0.02, \mathrm{dy}=-0.01$.

For Exercise 14
14. If $y=\sqrt{x}$, then $d y=\frac{1}{2 \sqrt{x}} d x$.

If $\mathrm{x}=1$ and $\mathrm{dx}=\Delta \mathrm{x}=1$, then $\Delta \mathrm{y}=\sqrt{1+1}-\sqrt{1}=\sqrt{2}-\sqrt{1}=\sqrt{2}-1 \approx 0.414213562$ while $d y=\frac{1}{2}$. See graph above and to the right.
18. $y=x^{4}+x^{2}+1$. $\mathrm{dy}=\left(4 \mathrm{x}^{3}+2 \mathrm{x}\right) \mathrm{dx}=$ $=6 \mathrm{dx}$ if $\mathrm{x}=1$.
See table to the right.

$\mathrm{dx}=\Delta \mathrm{x}$	Δy	dy	$\Delta y-d y$
1.0	18.0	6.0	12.0
0.5	5.3125	3.0	2.3125
0.1	0.6741	0.6	0.0741

22. Let $y=x^{6}$. Then $d y=6 x^{5} d x$. If $x=2$ and $\Delta x=d x=-0.03$ then $d y=-5.76$ and $y+d y=58.24$. In fact $1.97^{6}=58.451728309129$, exactly.
23. $A=\pi r^{2}$ so $d A=2 \pi r d r$.
(a) If $\mathrm{r}=24 \mathrm{~cm}$ and $\mathrm{dr}=0.2 \mathrm{~cm}$ then $\mathrm{dA}=9.6 \pi \approx 30.16 \mathrm{~cm}^{2}$. (The maximum error can be a bit more than this; $\Delta \mathrm{A}=\pi\left(24.2^{2}-24^{2}\right)=9.64 \pi \approx 30.28495318 \mathrm{~cm}^{2}$.)
(b) The relative error is $\frac{d A}{A}=\frac{9.6 \pi}{576 \pi}=\frac{1}{60} \approx 0.016666667$. Notice that the relative error in radius is $\frac{0.2}{24}=\frac{1}{120}$, so the relative error in area is exactly twice the relative error in radius. Can you explain why that had to be the case?
24. $V=\frac{2}{3} \pi r^{3} ; r=25 \mathrm{~m}$ and $\mathrm{dr}=0.05 \mathrm{~cm}=0.0005 \mathrm{~m}$, so $\mathrm{dV}=2 \pi \mathrm{r}^{2} \mathrm{dr}=\frac{5}{8} \pi$ or about $1.963 \mathrm{~m}^{3}$.

Section 2.10 (pg. 185):

4. If $x^{3}+x^{2}+2=0, x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\frac{2 x_{n}^{3}+x_{n}^{2}-2}{3 x_{n}^{2}+2 x_{n}}$.

If $x_{1}=-2, x_{2}=-1.75, x_{3} \approx-1.6978021978, x_{4} \approx-1.6956244765$, $x_{5} \approx-1.6956207696$, and $x_{6} \approx-1.6956207696$ also.
From here on, any changes have to be after the 10 th decimal place.
6. If $x^{7}-100=0, x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\frac{6 x_{n}^{7}+100}{7 x_{n}^{6}}$.

If $x_{1}=2, x_{2}=1.9375, x_{3} \approx 1.9307689564, x_{4} \approx 1.9306977368$,
$x_{5} \approx 1.9306977289$, and $x_{6} \approx 1.9306977289$ also.
The n $\underline{\text { th }}$ root function on my Texas Instruments TI-36 calculator also gives $\sqrt[7]{100} \approx 1.9306977289$. The Maple program on my Macintosh computer gives $\sqrt[7]{100} \approx 1.9306977288832501670$, to 20 significant figures (more for the asking).
10. If $x^{4}+x^{3}-22 x^{2}-2 x+41=0, x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\frac{3 x^{4}+2 x^{3}-22 x^{2}-41}{4 x^{3}+3 x^{2}-44 x-2}$.
$f(1)=19$ and $f(2)=-27$ so linear interpolation (pretending the graph is straight) leads to a first guess of about 1.4 for a root, since 27 is about $1.5 \cdot 19$. Of course you could try a different x_{1}; this time Newton's Method works for any x_{1} in the interval [1, 2]. $x_{1}=1.4, x_{2} \approx 1.435632381, x_{3} \approx 1.435476098, x_{4} \approx 1.435476095, x_{5} \approx 1.435476095$ gets the answer quickly to 10 decimal places. Starting with $x_{1}=1$ only takes one step longer. Starting with $\mathrm{x}_{1}=2$ surprisingly is almost as fast as starting with $\mathrm{x}_{1}=1.4$.
If you plot $f(x)$ (using Maple, for instance) over the interval $-1 \leq x \leq 3.5$ you will see why this works so well.
12. Let $f(x)=\tan x-x$. Note $f^{\prime}(x)=\sec ^{2} x-1=\tan ^{2} x \geq 0$, so $f(x)$ is increasing in $(\pi / 2,3 \pi / 2)$. Since $f(4 \pi / 3)=\sqrt{3}-4 \pi / 3<0$ while $\lim _{x \rightarrow 3 \pi / 2^{-}} f(x)=+\infty$, there is a root for the equation $f(x)=0$ between $4 \pi / 3 \approx 4.188790205$ and $3 \pi / 2 \approx 4.712388980$.
Using $x_{1}=4.5$ and $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\tan x_{n}-x_{n}}{\tan ^{2} x_{n}}=\frac{x_{n}-\left(\sin x_{n}\right)\left(\cos x_{n}\right)}{\sin ^{2} x_{n}}$,
$x_{2} \approx 4.4936139028, x_{3} \approx 4.4934096550, x_{4} \approx 4.4934094579$, and $x_{5} \approx 4.4934094579$ also.
18. Note $\frac{d}{d x} \sin (\pi x)=\pi \cos (\pi x)$, which is π when $x=0$, so the graph of $y=\sin (\pi x)$ is steeper at the origin than that of $y=x$. After the peak at $(1 / 2,1), y=\sin (\pi x)$ drops while $y=x$ rises and the two graphs cross before $x=1$ (since when $x=1$, $\sin (\pi x)=0)$. After that, $y=x$ rises above $y=1$, and $y=\sin (\pi x)$ can never get larger than 1 . So there is a unique positive root for the equation $\sin (\pi x)=x$ between $1 / 2$ and 1. (A good guess for it would be 0.75 .)
By symmetry there is a unique negative root between -1 and $-1 / 2$.

And of course there is the root at $x=0$.
If $f(x)=\sin (\pi x)-x$ and $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\sin \left(\pi x_{n}\right)-x_{n}}{\pi \cos \left(\pi x_{n}\right)-1}=\frac{\pi x_{n} \cos \left(\pi x_{n}\right)-\sin \left(\pi x_{n}\right)}{\pi \cos \left(\pi x_{n}\right)-1}$, for $x_{1}=0.75$ we have $x_{2} \approx 0.7366850852, x_{3} \approx 0.7364844950, x_{4} \approx 0.7364844482$, and $x_{5} \approx 0.7364844482$. So the roots are $x=0$ and $x \approx \pm 0.7364844482$.
See graph above and to the right.
24. (a) Let $f(x)=\frac{1}{x}-a$. Then $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\frac{1}{x_{n}}-a}{-\frac{1}{x_{n}^{2}}}=2 x_{n}-a x_{n}^{2}$.
(b) Since $\frac{1}{1.6984}$ is approximately 0.6 , a good choice for x_{1} is $x_{1}=0.6$. Then $x_{2} \approx 0.5885760000, x_{3} \approx 0.5887893715, x_{4} \approx 0.5887894489$, and $x_{5} \approx 0.5887894489$. So $\frac{1}{1.6984} \approx 0.5887894489$.
My TI-36 approximates $\frac{1}{1.6984}$ as 0.5887894489 , as well.

Section 3.1 (pg. 200):
6. See graph to the right.
14. $\lim _{x \rightarrow-\infty} 1.1^{x}=0$, since $1.1>1$.
18. $\lim _{x \rightarrow-\infty} \frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}=\lim _{x \rightarrow-\infty} \frac{e^{6 x}-1}{e^{6 x}+1}=-1$.
26. On the next page are are tabulated values of $\frac{2.7^{h}-1}{h}$ and $\frac{2.8^{h}-1}{h}$ obtained by
 using a $\mathrm{Tl}-36$ calculator and rounding the results off to 5 decimal places.

h	1	0.1	0.01	0.001	0.0001	0.00001
$\frac{2.7^{h}-1}{h}$	1.70000	1.04425	0.99820	0.99375	0.99330	0.99326
$\frac{2.8^{h}-1}{h}$	1.80000	1.08449	1.03494	1.03015	1.02967	1.02962

h	-1	-0.1	-0.01	-0.001	-0.0001	-0.00001
$\frac{2.7^{h}-1}{h}$	0.62963	0.94552	0.98834	0.99276	0.99320	0.99325
$\frac{2.8^{h}-1}{h}$	0.64286	0.97839	1.02437	1.02909	1.02957	1.02961

Apparently, to two decimal places, $\lim _{h \rightarrow 0} \frac{2.7^{h}-1}{h} \approx 0.99$ and $\lim _{h \rightarrow 0} \frac{2.8^{h}-1}{h} \approx 1.03$.
This tells us that e lies between 2.7 and 2.8, probably closer to 2.7.
28. If $f(x)=x e^{-x^{2}}$, then $f^{\prime}(x)=1 \cdot e^{-x^{2}}+x \cdot\left[e-x^{2} \cdot(-2 x)\right]=\left(1-2 x^{2}\right) e^{-x^{2}}$.
32. If $h(\theta)=e^{\sin (5 \theta)}, h^{\prime}(\theta)=5 \cos (5 \theta) e^{\sin (5 \theta)}$.

42. If $y=\sec \left(e^{\tan \left(x^{2}\right)}\right), y^{\prime}=2 x \sec ^{2}\left(x^{2}\right) e^{\tan \left(x^{2}\right)} \sec \left(e^{\tan \left(x^{2}\right)}\right) \tan \left(e^{\tan \left(x^{2}\right)}\right)$.
48. If $y=A e^{-x}+B x e^{-x}=(A+B x) e^{-x}$, then using the product and chain rules, $y^{\prime}=[B+(A+B x)(-1)] e^{-x}=[(B-A)-B x] e^{-x}$. Likewise $y^{\prime \prime}=\{-B+[(B-A)-B x](-1)\} e^{-x}=[(A-2 B)+B x] e^{-x}$. So $y^{\prime \prime}+2 y^{\prime}+y=[(A-2 B)+B x] e^{-x}+2[(B-A)-B x] e^{-x}+(A+B x) e^{-x}=$ $=\{[(A-2 B)+2(B-A)+A]+[B x-2 B x+B x]\} e^{-x}=0$.
52. If $f(x)=x e^{-x}$ then $f^{\prime}(x)=[1+x \cdot(-1)] e^{-x}=[1-x] e^{-x}$ (product and chain rules).

Then $f^{\prime \prime}(x)=[(-1)+(1-x) \cdot(-1)] e^{-x}=[-2+x] e^{-x}$.
Likewise $\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=[1+(-2+\mathrm{x}) \cdot(-1)] \mathrm{e}^{-\mathrm{x}}=[3-\mathrm{x}] \mathrm{e}^{-\mathrm{x}}$.
So it appears that $f^{(n)}(x)=\left[(-1)^{n+1} n+(-1)^{n} x\right] e^{-x}=(-1)^{n}(x-n) e^{-x}$.
Students familiar with Mathematical Induction (Appendix E in the text) can verify this.
The formula certainly is true when $\mathrm{n}=0$ and when $\mathrm{n}=1$.
If it is true when $n=k$, so that $f^{(k)}(x)=(-1)^{k}(x-n) e^{-x}$, by the product and chain rules that will make $f^{(k+1)}(x)=(-1)^{k}[1+(x-n) \cdot(-1)] e^{-x}=(-1)^{k+1}[x-(n+1)] e^{-x}$.
In other words, if the formula is ever true, it will be true the next time too.
Since it is true at the beginning ($\mathrm{n}=0$), it stays true forever.
That makes $f(1000)(x)=(x-1000) e^{-x}$.

