MATHEMATICS 151

Assignment 8, due Monday 19 July 1999

Section 3.2 (pg. 208):

2. f is one-to-one since horizontal lines never meet the graph more than once.
3. f is not one-to-one since there is a horizontal line which meets the graph more than once-in fact, in infinitely many places along a line segment.
4. f is one-to-one since horizontal lines never meet the graph more than once.
5. $f(x)=x^{2}-2 x+5=(x-1)^{2}+4$ is not one-to-one, since $f(1+h)=f(1-h)=h^{2}+4$.
6. $g(x)=|x|$ is not one-to-one since $g(-x)=g(x)$.
7. If $f(x)=5-4 x^{3}$ then f is decreasing and can never take the same value twice.

Write $y=5-4 x^{3}$ and solve for $x=\sqrt[3]{\frac{5-y}{4}}$.
Interchanging x and y, the inverse function is $y=f^{-1}(x)=\sqrt[3]{\frac{5-x}{4}}$.
18. If $f(x)=x^{2}+x=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}, x \geq-\frac{1}{2}$, f increases and never takes the same value twice. Write $y=x^{2}+x$ and solve for $x=\frac{-1 \pm \sqrt{12_{2}+4 y}}{2}=-\frac{1}{2} \pm \frac{1}{2} \sqrt{1+4 y}$.
But we must have $x \geq-\frac{1}{2}$, so $x=-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 y}$.
Interchanging x and y, the inverse function is $y=f-1(x)=-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 x}$.
20. (a) $f(x)=6-x$ is decreasing hence one-to-one. The domain and range are $(-\infty,+\infty)$.
(b) $f^{\prime}(x)=-1$ hence $g^{\prime}(a)=\frac{1}{f^{\prime}(g(a))}=-1$. If $a=2, g^{\prime}(2)=-1$. Compare with (d).
(c) If $y=6-x, x=6-y$.

Interchanging x and $y, f^{-1}(x)=g(x)=6-x$. The domain and range of g are both $(-\infty,+\infty)$, the same as the range and domain of f.
(d) Since $g(x)=6-x, g^{\prime}(x)=-1$ and $g^{\prime}(2)=-1$. Compare with (b).

For Exercise 20
(e) See graphs of f and g to the right.
22. (a) $f(x)=\sqrt{x-2}$ is increasing.

Hence it is one-to-one.
Its domain is $[2,+\infty)$; its range is $[0,+\infty)$.
(b) $f^{\prime}(x)=\frac{1}{2 \sqrt{x-2}}$, so $g^{\prime}(a)=2 \sqrt{g(a)-2}$.

Since $f(6)=2, g(2)=6$.
So $g^{\prime}(2)=2 \sqrt{6-2}=4$. Compare with (d).
(c) If $y=\sqrt{x-2}, x=y^{2}+2$.

Interchanging x and $y, f^{-1}(x)=g(x)=x^{2}+2$. The domain of g is $[0,+\infty)$, the range of f; the range of g is $[2,+\infty)$, the domain of f.
(d) $g^{\prime}(x)=2 x$ and $g^{\prime}(2)=4$.

Compare with (b).

For Exercise 22
(e) See graphs of f and g to the right.
40. $\sin (x+2 \pi)=\sin x$, hence $h(x)=\sin x$ is not one-to-one on $(-\infty,+\infty)$. $h(x)=\sin x$ is increasing on $[-\pi / 2, \pi / 2]$, hence it is one-to-one there.
Let $y=\sin ^{-1} x$, so $x=\sin y$. Differentiating with respect to $x, 1=(\cos y) \cdot \frac{d y}{d x}$, so $\frac{d}{d x} \sin ^{-1} x=\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\cos \left(\sin ^{-1} x\right)}=\frac{1}{\sqrt{1-x^{2}}}$ provided $\cos \left(\sin ^{-1} x\right) \neq 0$, i.e. provided $-1<x<1$. (Note that $1=\cos ^{2}\left(\sin ^{-1} x\right)+\sin ^{2}\left(\sin ^{-1} x\right)=\cos ^{2}\left(\sin ^{-1} x\right)+x^{2}$, so $\cos ^{2}\left(\sin ^{-1} x\right)=1-x^{2}$ and $\cos \left(\sin ^{-1} x\right)= \pm \sqrt{1-x^{2}}$. But since $-\pi / 2 \leq \sin ^{-1} x \leq \pi / 2$, $\cos \left(\sin ^{-1} x\right) \geq 0$ and the + sign must be correct.)

Section 3.3 (pg. 214):

4. $\log _{8} 4=\frac{2}{3}$ since $8^{2 / 3}=4$.
5. $\log _{3} 108-\log _{3} 4=\log _{3} \frac{108}{4}=\log _{3} 27=3$ since $3^{3}=27$.
6. $\quad e^{3 \ln 2}=\left(e^{\ln 2}\right)^{3}=2^{3}=8$.
7. $2^{x-5}=3$ is equivalent to $x-5=\log _{2} 3=\frac{\ln 3}{\ln 2}$, or to $x=5+\log _{2} 3=5+\frac{\ln 3}{\ln 2}$.
8. $\ln x+\ln (x-1)=1$ is equivalent to $\ln [x(x-1)]=1, x>0, x-1>0$. (The inequalities must be included, since it is possible for to have $x<0, x-1<0$, but $x(x-1)>0$, and then x and $x-1$ do not have logarithms, while $x(x-1)$ does.)
Thus we solve $x(x-1)=e$, obtaining $x=\frac{1 \pm \sqrt{1+4 e}}{2}=\frac{1}{2} \pm \frac{\sqrt{1+4 e}}{2}$. However we must
reject $\frac{1}{2}-\frac{\sqrt{1+4 e}}{2}$ since it is negative and has no logarithm. The only solution is $x=\frac{1+\sqrt{1+4 \mathrm{e}}}{2}=\frac{1}{2}+\frac{\sqrt{1+4 \mathrm{e}}}{2}$.
9. $\lim _{x \rightarrow 0^{+}} \ln (\sin x)=-\infty$, since $\lim _{x \rightarrow 0^{+}} \sin x=0$, the limiting value of $\sin x$ being approached from the right so that $\ln (\sin x)$ is meaningful when x is close enough to 0 but on the right.
10. $\lim _{x \rightarrow+\infty} \frac{\ln x}{1+\ln x}=\lim _{x \rightarrow+\infty} \frac{1}{\frac{1}{\ln x}+1}=1$.
11. $t^{3}-t=t(t+1)(t-1)>0$ on $(-1,0) \cup(1,+\infty)$ so the domain of $G(t)=\ln \left(t^{3}-t\right)$ is $(-1,0) \cup(1,+\infty)$. But $t^{3}-t=t\left(t^{2}-1\right)$ takes on all values in ($\left.0,2 \sqrt{3} / 9\right]$ for $-1<t<0$ and all values in $(0,+\infty)$ for $0<t<+\infty$, so the range of $G(t)=\ln \left(\mathrm{t}^{3}-\mathrm{t}\right)$ is $(-\infty,+\infty)$.
12. $y=\frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}$ with domain $(-\infty, 0) \cup(0,+\infty)$.
$y^{\prime}=\frac{\left(1-e^{x}\right) \cdot e^{x}-\left(1+e^{x}\right) \cdot\left(-e^{x}\right)}{\left(1-e^{x}\right)^{2}}=\frac{2 e^{x}}{\left(1-e^{x}\right)^{2}}>0$ so the function is increasing on $(-\infty, 0)$
and on $(0,+\infty)$. Since $\lim _{x \rightarrow-\infty} \frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}=1, \lim _{x \rightarrow 0^{-}} \frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}=+\infty, \lim _{\mathrm{x} \rightarrow 0^{+}} \frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}=-\infty$,
and $\lim _{x \rightarrow+\infty} \frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}=\lim _{\mathrm{x} \rightarrow+\infty} \frac{\mathrm{e}^{-x}+1}{\mathrm{e}^{-x}-1}=-1$, the range of our function is $(-\infty,-1) \cup(1,+\infty)$, the values in $(-\infty,-1)$ occurring when $0<x<+\infty$ and the values in $(1,+\infty)$ occurring when $-\infty<x<0$.
$y=\frac{1+e^{x}}{1-e^{x}} \Leftrightarrow y-y e^{x}=1+e^{x} \Leftrightarrow e^{x}(y+1)=y-1 \Leftrightarrow e^{x}=\frac{y-1}{y+1} \Leftrightarrow x=\ln \frac{y-1}{y+1}$.
So the inverse function has $y=\ln \frac{x-1}{x+1}$, with domain $(-\infty,-1) \cup(1,+\infty)$ and range $(-\infty, 0) \cup(0,+\infty)$.

Section 3.4 (pg. 221):

2. $f(x)=\cos (\ln x)$ with domain $(0,+\infty)$, so $f^{\prime}(x)=-\frac{\sin (\ln x)}{x}$ with domain $(0,+\infty)$.
3. $f(x)=\sqrt{3-2^{x}}$ has domain $\left(-\infty, \log _{2} 3\right]=(-\infty,(\ln 3) /(\ln 2)]$.
$f^{\prime}(x)=\frac{1}{2 \sqrt{3-2^{x}}} \cdot(-2 \times \ln 2)=-\frac{2 x-1 \ln 2}{\sqrt{3-2^{x}}}$ has domain $\left(-\infty, \log _{2} 3\right)=(-\infty,(\ln 3) /(\ln 2))$.
4. If $y=\ln (a x), y^{\prime}=\frac{1}{a x} \cdot a=\frac{1}{x}$ and $y^{\prime \prime}=-\frac{1}{x^{2}}$, assuming $a \neq 0$.

Alternatively, $y=\ln a+\ln x$ so $y^{\prime}=0+\frac{1}{x}=\frac{1}{x}$. However this argument only holds for $a>0$ and $x>0$. If $a<0$ and $x<0$ then $y=\ln (a x)=\ln [(-a)(-x)]=\ln (-a)+\ln (-x)$ and then $y^{\prime}=0+\frac{1}{-x} \cdot(-1)=\frac{1}{x}$.
10. If $y=\ln (\sec x+\tan x), y^{\prime}=\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x}=\frac{\sec x(\tan x+\sec x)}{\sec x+\tan x}=\sec x$ and $y^{\prime \prime}=\sec x \tan x$.
20. $G(u)=\ln \sqrt{\frac{3 u+2}{3 u-2}}=\ln \left(\frac{3 u+2}{3 u-2}\right)^{V 2}$.
$G^{\prime}(u)=\frac{1}{\left(\frac{3 u+2}{3 u-2}\right)^{12}} \cdot \frac{1}{2}\left(\frac{3 u+2}{3 u-2}\right)^{-v 2} \cdot \frac{(3 u-2) \cdot 3-(3 u+2) \cdot 3}{(3 u-2)^{2}}=-\frac{6}{(3 u+2)(3 u-2)}=-\frac{6}{9 u^{2}-4}$.
28. $G(x)=5^{\tan x}$ so $G^{\prime}(x)=5^{\tan x} \cdot \ln 5 \cdot \sec ^{2} x$.
42. $y=(\sin x)^{\cos x}=e^{\cos x \cdot \ln (\sin x)}$.
$y^{\prime}=e^{\cos x \cdot \ln (\sin x)} \cdot\left[-(\sin x) \cdot \ln (\sin x)+\cos x \cdot \frac{1}{\sin x} \cdot \cos x\right]=$
$=(\sin x)^{\cos x}\left[-(\sin x) \cdot \ln (\sin x)+\frac{\cos ^{2} x}{\sin x}\right]$.
Alternatively, $\ln y=(\cos x) \ln (\sin x)$.
$\frac{y^{\prime}}{y}=-(\sin x) \cdot \ln (\sin x)+\cos x \frac{\cos x}{\sin x}=-(\sin x) \cdot \ln (\sin x)+\frac{\cos ^{2} x}{\sin x}$.
$y^{\prime}=y\left[-(\sin x) \cdot \ln (\sin x)+\frac{\cos ^{2} x}{\sin x}\right]=(\sin x)^{\cos x}\left[-(\sin x) \cdot \ln (\sin x)+\frac{\cos ^{2} x}{\sin x}\right]$.
60. $y=\sqrt{\frac{x^{2}+1}{x+1}}, x>-1$, so $\ln y=\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{1}{2} \ln (x+1)$.
$\frac{y^{\prime}}{y}=\frac{x}{x^{2}+1}-\frac{1}{2(x+1)}$.
$y^{\prime}=y\left[\frac{x}{x^{2}+1}-\frac{1}{2(x+1)}\right]=\frac{\left(x^{2}+1\right)^{1 / 2}}{(x+1)^{1 / 2}}\left[\frac{x}{x^{2}+1}-\frac{1}{2(x+1)}\right]=\frac{x}{(x+1)^{1 / 2}\left(x^{2}+1\right)^{1 / 2}}-\frac{\left(x^{2}+1\right)^{1 / 2}}{2(x+1)^{3 / 2}}$.
62. $y=\frac{\left(x^{3}+1\right)^{4} \sin ^{2} x}{\sqrt[3]{x}}$, so $\ln y=4 \ln \left(x^{3}+1\right)+2 \ln (\sin x)-\frac{1}{3} \ln x, x>0$.
$\frac{y^{\prime}}{y}=\frac{12 x^{2}}{x^{3}+1}+2 \frac{\cos x}{\sin x}-\frac{1}{3 x}$.
$y^{\prime}=y\left[\frac{12 x^{2}}{x^{3}+1}+2 \frac{\cos x}{\sin x}-\frac{1}{3 x}\right]=\frac{\left(x^{3}+1\right)^{4} \sin ^{2} x}{\sqrt[3]{x}}\left[\frac{12 x^{2}}{x^{3}+1}+2 \frac{\cos x}{\sin x}-\frac{1}{3 x}\right]=$
$=12\left(x^{3}+1\right)^{3} x^{5 / 3} \sin ^{2} x+2\left(x^{3}+1\right)^{4} x^{-1 / 3} \cos x \sin x-\frac{1}{3} x^{-4 / 3}\left(x^{3}+1\right)^{4} \sin ^{2} x$.

