MATHEMATICS 151

Assignment 8, due Monday 19 July 1999

Section 3.2 (pg. 208):

2. f is one-to-one since horizontal lines never meet the graph more than once.

4. f is not one-to-one since there is a horizontal line which meets the graph more than once—in fact, in infinitely many places along a line segment.

6. f is one-to-one since horizontal lines never meet the graph more than once.

8. $f(x) = x^2 - 2x + 5 = (x - 1)^2 + 4$ is not one-to-one, since $f(1 + h) = f(1 - h) = h^2 + 4$.

10. g(x) = |x| is not one-to-one since g(-x) = g(x).

16. If $f(x) = 5 - 4x^3$ then f is decreasing and can never take the same value twice. Write $y = 5 - 4x^3$ and solve for $x = \sqrt[3]{\frac{5-y}{4}}$.

Interchanging x and y, the inverse function is $y = f^{-1}(x) = \sqrt[3]{\frac{5-x}{4}}$.

18. If $f(x) = x^2 + x = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4}$, $x - \frac{1}{2}$, f increases and never takes the same value twice. Write $y = x^2 + x$ and solve for $x = \frac{-1 \pm \sqrt{12 + 4y}}{2} = -\frac{1}{2} \pm \frac{1}{2}\sqrt{1 + 4y}$. But we must have $x - \frac{1}{2}$, so $x = -\frac{1}{2} + \frac{1}{2}\sqrt{1 + 4y}$. Interchanging x and y, the inverse function is $y = f^{-1}(x) = -\frac{1}{2} + \frac{1}{2}\sqrt{1 + 4x}$. **20.** (a) f(x) = 6 - x is decreasing hence one-to-one. The domain and range are (-, +). (b) f'(x) = -1 hence $g'(a) = \frac{1}{f'(q(a))} = -1$.

If a = 2, q'(2) = -1. Compare with (d).

(c) If y = 6 - x, x = 6 - y. Interchanging x and y, $f^{-1}(x) = g(x) = 6 - x$. The domain and range of g are both (-, +), the same as the range and domain of f.

(d) Since g(x) = 6 - x, g'(x) = -1 and g'(2) = -1. Compare with (b).

(e) See graphs of f and g to the right.

For Exercise 20

22. (a) $f(x) = \sqrt{x-2}$ is increasing. Hence it is one-to-one. Its domain is [2, +); its range is [0, +). (b) $f'(x) = \frac{1}{2\sqrt{x-2}}$, so $g'(a) = 2\sqrt{g(a)-2}$. Since f(6) = 2, g(2) = 6. So $g'(2) = 2\sqrt{6} - 2 = 4$. Compare with (d). (c) If $y = \sqrt{x-2}$, $x = y^2 + 2$. (0, 2)Interchanging x and y, $f^{-1}(x) = g(x) = x^2 + 2$. The domain of g is [0, +), the range of f; the range of g is [2, +), the domain of f. (2, 0)(d) g'(x) = 2x and g'(2) = 4. Compare with (b). For Exercise 22

(e) See graphs of f and g to the right.

40. sin(x + 2) = sinx, hence h(x) = sinx is not one-to-one on (-, +). $h(x) = \sin x$ is increasing on $[-\frac{1}{2}, \frac{1}{2}]$, hence it is one-to-one there. Let $y = \sin^{-1} x$, so $x = \sin y$. Differentiating with respect to x, $1 = (\cos y) \cdot \frac{dy}{dx}$, so $\frac{d}{dx}\sin^{-1}x = \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\cos(\sin^{-1}x)} = \frac{1}{\sqrt{1-x^2}}$ provided $\cos(\sin^{-1}x) = 0$, i.e. provided -1 < x < 1. (Note that $1 = \cos^2(\sin^{-1}x) + \sin^2(\sin^{-1}x) = \cos^2(\sin^{-1}x) + x^2$, so $\cos^{2}(\sin^{-1}x) = 1 - x^{2}$ and $\cos(\sin^{-1}x) = \pm \sqrt{1 - x^{2}}$. But since $-\frac{1}{2} \sin^{-1}x \frac{1}{2}$, $\cos(\sin^{-1}x) = 0$ and the + sign must be correct.)

Section 3.3 (pg. 214):

- $\log_8 4 = \frac{2}{3}$ since $8^{2/3} = 4$. 4.
- 10. $\log_3 108 \log_3 4 = \log_3 \frac{108}{4} = \log_3 27 = 3$ since $3^3 = 27$.
- 14. $e^{3\ln 2} = (e^{\ln 2})^3 = 2^3 = 8$.
- 36. $2^{x-5} = 3$ is equivalent to $x 5 = \log_2 3 = \frac{\ln 3}{\ln 2}$, or to $x = 5 + \log_2 3 = 5 + \frac{\ln 3}{\ln 2}$.

46. $\ln x + \ln(x - 1) = 1$ is equivalent to $\ln[x(x - 1)] = 1$, x > 0, x - 1 > 0. (The inequalities must be included, since it is possible for to have x < 0, x - 1 < 0, but x(x - 1) > 0, and then x and x - 1 do not have logarithms, while x(x - 1) does.) Thus we solve x(x - 1) = e, obtaining $x = \frac{1 \pm \sqrt{1 + 4e}}{2} = \frac{1}{2} \pm \frac{\sqrt{1 + 4e}}{2}$. However we must reject $\frac{1}{2} - \frac{\sqrt{1+4e}}{2}$ since it is negative and has no logarithm. The only solution is $x = \frac{1+\sqrt{1+4e}}{2} = \frac{1}{2} + \frac{\sqrt{1+4e}}{2}$.

66. $\lim_{x \to 0^+} \ln(\sin x) = -$, since $\lim_{x \to 0^+} \sin x = 0$, the limiting value of $\sin x$ being approached from the right so that $\ln(\sin x)$ is meaningful when x is close enough to 0 but on the right.

68. $\lim_{x \to +} \frac{\ln x}{1 + \ln x} = \lim_{x \to +} \frac{1}{\ln x} = 1.$

74. $t^3 - t = t(t + 1)(t - 1) > 0$ on (-1, 0) (1, +) so the domain of $G(t) = ln(t^3 - t)$ is (-1, 0) (1, +). But $t^3 - t = t(t^2 - 1)$ takes on all values in $(0, 2\sqrt{3}/9]$ for -1 < t < 0 and all values in (0, +) for 0 < t < +, so the range of $G(t) = ln(t^3 - t)$ is (-, +).

80. $y = \frac{1+e^x}{1-e^x}$ with domain (-, 0) (0, +). $y' = \frac{(1-e^x)\cdot e^x - (1+e^x)\cdot (-e^x)}{(1-e^x)^2} = \frac{2e^x}{(1-e^x)^2} > 0$ so the function is increasing on (-, 0)and on (0, +). Since $\lim_{x \to -} \frac{1+e^x}{1-e^x} = 1$, $\lim_{x \to 0^-} \frac{1+e^x}{1-e^x} = +$, $\lim_{x \to 0^+} \frac{1+e^x}{1-e^x} = -$, and $\lim_{x \to +} \frac{1+e^x}{1-e^x} = \lim_{x \to +} \frac{e^{-x}+1}{e^{-x}-1} = -1$, the range of our function is (-, -1) (1, +), the values in (-, -1) occurring when 0 < x < + and the values in (1, +)occurring when - < x < 0. $y = \frac{1+e^x}{1-e^x}$ $y - ye^x = 1 + e^x$ $e^x(y+1) = y - 1$ $e^x = \frac{y-1}{y+1}$ $x = \ln \frac{y-1}{y+1}$. So the inverse function has $y = \ln \frac{x-1}{x+1}$, with domain (-, -1) (1, +) and range (-, 0) (0, +).

Section 3.4 (pg. 221):

2. f(x) = cos(lnx) with domain (0, +), so $f'(x) = -\frac{sin(lnx)}{x}$ with domain (0, +).

6.
$$f(x) = \sqrt{3} - 2^x$$
 has domain $(-, \log_2 3] = (-, (\ln 3)/(\ln 2)]$.
 $f'(x) = \frac{1}{2\sqrt{3-2^x}} (-2^x \ln 2) = -\frac{2^{x-1} \ln 2}{\sqrt{3-2^x}}$ has domain $(-, \log_2 3) = (-, (\ln 3)/(\ln 2))$.

8. If
$$y = \ln(ax)$$
, $y' = \frac{1}{ax} \cdot a = \frac{1}{x}$ and $y'' = -\frac{1}{x^2}$, assuming a 0.

Alternatively, $y = \ln a + \ln x$ so $y' = 0 + \frac{1}{x} = \frac{1}{x}$. However this argument only holds for a > 0 and x > 0. If a < 0 and x < 0 then $y = \ln(ax) = \ln[(-a)(-x)] = \ln(-a) + \ln(-x)$ and then $y' = 0 + \frac{1}{-x} \cdot (-1) = \frac{1}{x}$.

10. If $y = \ln(\sec x + \tan x)$, $y' = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} = \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} = \sec x$ and $y'' = \sec x \tan x$.

20.
$$G(u) = \ln \sqrt{\frac{3u+2}{3u-2}} = \ln \frac{3u+2}{3u-2} \frac{\sqrt{2}}{2}$$
$$G'(u) = \frac{1}{\frac{3u+2}{3u-2}} \frac{1}{2} \frac{3u+2}{2} \frac{-\sqrt{2}}{3u-2} \frac{(3u-2)(3u-2)(3u+2)(3u-2)}{(3u-2)^2} = -\frac{6}{(3u+2)(3u-2)} = -\frac{6}{9u^2-4}.$$

28. $G(x) = 5^{tanx}$ so $G'(x) = 5^{tanx} \cdot \ln 5 \cdot \sec^2 x$.

42.
$$y = (\sin x)^{\cos x} = e^{\cos x \cdot \ln(\sin x)}$$
.
 $y' = e^{\cos x \cdot \ln(\sin x)} \cdot \left[-(\sin x) \cdot \ln(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x \right] =$
 $= (\sin x)^{\cos x} - (\sin x) \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x}$.
Alternatively, $\ln y = (\cos x) \ln(\sin x)$.
 $\frac{y'}{y} = -(\sin x) \cdot \ln(\sin x) + \cos x \frac{\cos x}{\sin x} = -(\sin x) \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x}$.
 $y' = y - (\sin x) \cdot \ln(\sin x) + \cos x \frac{\cos^2 x}{\sin x} = (\sin x)^{\cos x} - (\sin x) \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x}$.
60. $y = \sqrt{\frac{x^2 + 1}{x + 1}}$, $x > -1$, so $\ln y = \frac{1}{2} \ln(x^2 + 1) - \frac{1}{2} \ln(x + 1)$.
 $\frac{y'}{y} = \frac{x}{x^2 + 1} - \frac{1}{2(x + 1)}$.
 $y' = y \frac{x}{x^2 + 1} - \frac{1}{2(x + 1)} = \frac{(x^2 + 1)^{1/2}}{(x + 1)^{1/2}} \frac{x}{x^2 + 1} - \frac{1}{2(x + 1)} = \frac{x}{(x + 1)^{1/2}(x^2 + 1)^{1/2}} - \frac{(x^2 + 1)^{1/2}}{2(x + 1)^{3/2}}$.
62. $y = \frac{(x^3 + 1)^4 \sin^2 x}{\sqrt[3]{x}}$, so $\ln y = 4 \ln(x^3 + 1) + 2 \ln(\sin x) - \frac{1}{3} \ln x$, $x > 0$.
 $\frac{y'}{y} = \frac{12x^2}{x^3 + 1} + 2 \frac{\cos x}{\sin x} - \frac{1}{3x}$.
 $y' = y \frac{12x^2}{x^3 + 1} + 2 \frac{\cos x}{\sin x} - \frac{1}{3x} = \frac{(x^3 + 1)^4 \sin^2 x}{\sqrt[3]{x}} \frac{12x^2}{x^3 + 1} + 2 \frac{\cos x}{\sin x} - \frac{1}{3x} =$
 $= 12(x^3 + 1)^3 x^{5/3} \sin^2 x + 2(x^3 + 1)^4 x^{-1/3} \cos x \sin x - \frac{1}{3} x^{-4/3} (x^3 + 1)^4 \sin^2 x$.