MATHEMATICS 151

Assignment 9, due Wednesday 21 July 1999

Section 3.5 (pg. 226):

2. (a) In t hours there will be 2t half-hours.

Thus the number of bacteria after t hours will be $N(t)=4000 \cdot 3^{2 t}=4000 \cdot 9 t$. Alternatively $\mathrm{N}(\mathrm{t})=4000 \cdot \mathrm{e}^{(\ln 3 \cdot 2) \mathrm{t}}=4000 \cdot \mathrm{e}^{(\ln 9) \mathrm{t}}$.
(b) In 20 minutes there will be $N(1 / 3)=4000 \cdot 3^{2 / 3}$ or $4000 \cdot e^{(\ln 9) / 3}$ bacteria.

But $4000 \cdot 3^{2 / 3}=4000 \cdot e^{(\ln 9 / 3)} \approx 8320.335292$. So there will be 8320 bacteria.
(c) If $\mathrm{N}(\mathrm{t})=20000$ then $3^{2 \mathrm{t}}=5$ and $2 \mathrm{t}=\frac{\ln 5}{\ln 3}$ so $\mathrm{t}=\frac{1}{2} \frac{\ln 5}{\ln 3} \approx 0.73248676$.

This will take about 0.73 hours, or about 44 minutes.
4. $\quad \mathrm{N}(\mathrm{t})=\mathrm{A} \cdot 2^{\mathrm{kt}}$, with $400=\mathrm{A} \cdot 2^{2 \mathrm{k}}$ and $25600=\mathrm{A} \cdot 2^{6 \mathrm{k}}$.

Cubing $400=A \cdot 2^{2 k}, 64000000=A^{3} \cdot 2^{6 k}$, so $2500=A^{2}, A=50$, and $512=2^{6 k}$.
But $512=2^{9}$, so $6 k=9$ and $k=1.5$.
(a) The initial size of the culture was 50 .
(b) $\mathrm{N}(\mathrm{t})=50 \cdot 2^{1.5 \mathrm{t}}$.
(c) $1.5 t=1$ when $t=2 / 3$. The population doubles in $2 / 3$ hour, or 40 minutes.
(d) When $\mathrm{N}(\mathrm{t})=100000,50 \cdot 2^{1.5 \mathrm{t}}=100000,2^{1.5 \mathrm{t}}=2000,1.5 \mathrm{t}=\frac{\ln 2000}{\ln 2}$,
and $t=\frac{2}{3} \frac{\ln 2000}{\ln 2} \approx 7.310522856$.
So we must wait about 7.3105 hours, or about 7 hours 18 minutes 38 seconds.
Alternatively, write $N(t)=A \cdot e^{c t}$, with $400=A \cdot e^{2 c}$ and $25600=A \cdot e^{6 c}$.
Then $64000000=A^{3} e^{6 c}$, so $A^{2}=2500$ and $A=50$. Hence $e^{2 c}=8$, and $c=\frac{\ln 8}{2}$.
(a) The initial size of the culture was 50.
(b) $\mathrm{N}(\mathrm{t})=50 \cdot \mathrm{e}^{((\mathrm{t} \ln 8) / 2)}$.
(c) If $\frac{t \ln 8}{2}=\ln 2$, then $t=\frac{2 \ln 2}{\ln 8}=\frac{2 \ln 2}{3 \ln 2}=\frac{2}{3}$.

So the population doubles in $2 / 3$ hour, or 40 minutes.
(d) If $\mathrm{N}(\mathrm{T})=100000, \mathrm{e}^{((\operatorname{tn} 8) / 2)}=2000 ; \mathrm{t}=\frac{2 \ln 2000}{\ln 8} \approx 7.310522856$, as before.
8. (a) If the original amount is 200 mg and the half-life is 140 days, then the mass at time t is $m(t)=200 \cdot 2^{-(t / 140)}$.
Alternatively $m(t)=200 \cdot e^{-c t}$, where $100=200 \cdot e^{-(140 c)}$, so $2=e^{140 c}$ and $c=\frac{\ln 2}{140}$.
Thus $\mathrm{m}(\mathrm{t})=200 \cdot \mathrm{e}^{-(\mathrm{t} \ln 2) / 140}$.
(b) After 100 days, $m(100)=200 \cdot 2^{-100 / 140}=200 \cdot 2^{-5 / 7} \approx 121.9013654$.

Alternatively $\mathrm{m}(100)=200 \cdot \mathrm{e}^{-(100 \mathrm{ln} 2) / 140} \approx 121.9013654$. About 121.9 mg will be left.
(c) When $\mathrm{m}(\mathrm{t})=10$,
$10=200 \cdot 2^{-t / 140}$ so $2^{t / 140}=20$
and $t=140 \frac{\ln 20}{\ln 2} \approx 605.0699333$.
Alternatively $10=200 \cdot e^{-(t \ln 2) / 140}$
so $\frac{\mathrm{t} \ln 2}{140}=\ln 20$ and $\mathrm{t}=140 \frac{\ln 20}{\ln 2}$.
We will have to wait about 605 days.
(d) See graph to the right.
14. If T is the temperature indicated on the thermometer, measured in degrees Celsius, and t is the time in minutes after the thermometer is taken outdoors, then $\mathrm{T}-5=15 \cdot \mathrm{e}^{-\mathrm{ct}}$, where $12-5=15 \cdot \mathrm{e}^{-\mathrm{c} \cdot 1}$. Then $e^{c}=\frac{15}{7}$, and $c=\ln \frac{15}{7}$, so that $\mathrm{T}=5+15 \cdot \mathrm{e}^{-(\operatorname{tln}(15 / 7))}=5+15 \cdot\left(\frac{7}{15}\right)^{\mathrm{t}}$.

For Exercise 8
(a) After 1 more minute, when $t=2$, $\mathrm{T}=5+15 \cdot \mathrm{e}^{-(2 \ln (15 / 7))}=5+15 \cdot\left(\frac{7}{15}\right)^{2}=5+\frac{49}{15}=\frac{124}{15} \approx 8.266666667^{\circ} \mathrm{C}$.
(b) When $T=6^{\circ} \mathrm{C}, 6=5+15\left(\frac{7}{15}\right)^{\mathrm{t}}$ and $\operatorname{tln} \frac{7}{15}=-\ln 15$, so $t=\frac{\ln 15}{\ln 15-\ln 7} \approx 3.55321859$ minutes, or about $3^{\prime} 33^{\prime \prime}$.
18. (a) With annual compounding, after two years the amount due will be $500 \cdot 1.14^{2}=649.8$, or $\$ 649.80$.
(b) With quarterly compounding, after two years the amount due will be $500 \cdot\left(1+\frac{0.14}{4}\right)^{8}=500 \cdot 1.0358 \approx 658.4045185$, or $\$ 658.40$.
(c) With monthly compounding, after two years the amount due will be $500 \cdot\left(1+\frac{0.14}{12}\right)^{24} \approx 660.4935501$, or \$660.49.
(d) With daily compounding (barring leap years), after two years the amount due will be $500 \cdot\left(1+\frac{0.14}{365}\right)^{730} \approx 661.5293892$, or $\$ 661.53$.
(e) With continuous compounding, after two years the amount due will be $500 \cdot \mathrm{e}^{2 \cdot 0.14} \approx 661.5649062$, or $\$ 661.56$.

Section 3.6 (pg. 233):

2. $\sin ^{-1}(0.5)=\pi / 6$ since $\sin (\pi / 6)=0.5$ and $-\pi / 2 \leq \pi / 6 \leq \pi / 2$.
3. $\arctan (-1)=-\pi / 4$ since $\tan (-\pi / 4)=-1$ and $-\pi / 2<-\pi / 4<\pi / 2$.
4. $\tan (\arctan 2)=2$, so $\sec ^{2}(\arctan 2)=1+\tan ^{2}(\arctan 2)=1+2^{2}=5$.

But $-\pi / 2<\arctan 2<\pi / 2$, so $\sec (\arctan 2)>0$, and $\sec (\arctan 2)=\sqrt{5}$.
18. $\quad \sin \left(\sin ^{-1}(1 / 3)\right)=1 / 3$, so $\cos \left(\sin ^{-1}(1 / 3)\right)=\sqrt{1-(1 / 3)^{2}}=2 \sqrt{2} / 3$.

Likewise $\sin \left(\sin ^{-1}(2 / 3)\right)=2 / 3$, so $\cos \left(\sin ^{-1}(2 / 3)\right)=\sqrt{1-(2 / 3)^{2}}=\sqrt{5} / 3$. Thus $\sin \left[\sin ^{-1}(1 / 3)+\sin ^{-1}(2 / 3)\right]=\sin \left(\sin ^{-1}(1 / 3)\right) \cos \left(\sin ^{-1}(2 / 3)\right)+\cos \left(\sin ^{-1}(1 / 3)\right) \sin \left(\sin ^{-1}(2 / 3)\right)=$ $=\frac{1}{3} \cdot \frac{\sqrt{5}}{3}+\frac{2 \sqrt{2}}{3} \cdot \frac{2}{3}=\frac{\sqrt{5}+4 \sqrt{2}}{9}$.
22. $\sin ^{2}\left(\cos ^{-1} x\right)=1-\cos ^{2}\left(\cos ^{-1} x\right)=1-x^{2}$. But $0 \leq \cos ^{-1} x \leq \pi$, so $\sin \left(\cos ^{-1} x\right) \geq 0$, $\sin \left(\cos ^{-1} x\right)=\sqrt{1-x^{2}}$, and $\sin \left(2 \cos ^{-1} x\right)=2 \cos \left(\cos ^{-1} x\right) \sin \left(\cos ^{-1} x\right)=2 x \sqrt{1-x^{2}}$.
30. If $f(x)=\sin ^{-1}(2 x-1)$, then $f^{\prime}(x)=\frac{1}{\sqrt{1-(2 x-1)^{2}}} \cdot 2=\frac{2}{\sqrt{4 x-4 x^{2}}}=\frac{1}{\sqrt{x-x^{2}}}$.
38. If $F(t)=\sqrt{1-t^{2}}+\sin ^{-1} t$, then $F^{\prime}(t)=\frac{1}{2} \frac{(-2 t)}{\sqrt{1-t^{2}}}+\frac{1}{\sqrt{1-t^{2}}}=\frac{1-t}{\sqrt{1-t^{2}}}=\sqrt{\frac{1-t}{1+t}}$.
48. If $y=x \sin x \csc ^{-1} x$, then $y^{\prime}=\sin x \csc ^{-1} x+x \cos x \csc ^{-1} x+x \sin x \cdot\left(-\frac{1}{x \sqrt{x^{2}-1}}\right)=$ $=\sin x \csc ^{-1} x+x \cos x \csc ^{-1} x-\frac{\sin x}{\sqrt{x^{2}-1}}$.
64. $\lim _{x \rightarrow+\infty}\left(x-x^{2}\right)=\lim _{x \rightarrow+\infty} x(1-x)=-\infty$, so $\lim _{x \rightarrow+\infty} \tan ^{-1}\left(x-x^{2}\right)=-\pi / 2$.

