MATHEMATICS 151

Assignment 9, due Wednesday 21 July 1999

Section 3.5 (pg. 226):

2. (a) In t hours there will be 2t half-hours. Thus the number of bacteria after t hours will be $N(t) = 4000 \cdot 3^{2t} = 4000 \cdot 9^{t}$. Alternatively $N(t) = 4000 \cdot e^{(\ln 3 \cdot 2)t} = 4000 \cdot e^{(\ln 9)t}$.

(b) In 20 minutes there will be $N(1/3) = 4000 \cdot 3^{2/3}$ or $4000 \cdot e^{(\ln 9)/3}$ bacteria. But $4000 \cdot 3^{2/3} = 4000 \cdot e^{(\ln 9/3)}$ 8320.335292. So there will be 8320 bacteria.

(c) If N(t) = 20000 then $3^{2t} = 5$ and $2t = \frac{\ln 5}{\ln 3}$ so $t = \frac{1}{2} \frac{\ln 5}{\ln 3}$ 0.73248676. This will take about 0.73 hours, or about 44 minutes.

4. $N(t) = A \cdot 2^{kt}$, with $400 = A \cdot 2^{2k}$ and $25600 = A \cdot 2^{6k}$. Cubing $400 = A \cdot 2^{2k}$, $64000000 = A^3 \cdot 2^{6k}$, so $2500 = A^2$, A = 50, and $512 = 2^{6k}$. But $512 = 2^9$, so 6k = 9 and k = 1.5.

- (a) The initial size of the culture was 50.
- (b) $N(t) = 50 \cdot 2^{1.5t}$.
- (c) 1.5t = 1 when t = 2/3. The population doubles in 2/3 hour, or 40 minutes.
- (d) When N(t) = 100000, $50 \cdot 2^{1.5t} = 100000$, $2^{1.5t} = 2000$, $1.5t = \frac{\ln 2000}{\ln 2}$,

and $t = \frac{2}{3} \frac{\ln 2000}{\ln 2}$ 7.310522856.

So we must wait about 7.3105 hours, or about 7 hours 18 minutes 38 seconds.

Alternatively, write $N(t) = A \cdot e^{ct}$, with $400 = A \cdot e^{2c}$ and $25600 = A \cdot e^{6c}$.

Then 64000000 = A^3e^{6c} , so $A^2 = 2500$ and A = 50. Hence $e^{2c} = 8$, and $c = \frac{\ln 8}{2}$.

- (a) The initial size of the culture was 50.
- (b) $N(t) = 50 \cdot e^{((t \ln 8)/2)}$.
- (c) If $\frac{t \ln 8}{2} = \ln 2$, then $t = \frac{2 \ln 2}{\ln 8} = \frac{2 \ln 2}{3 \ln 2} = \frac{2}{3}$.

So the population doubles in 2/3 hour, or 40 minutes.

(d) If N(T) = 100000, $e^{((tln8)/2)} = 2000$; $t = \frac{2 \ln 2000}{\ln 8}$ 7.310522856, as before.

8. (a) If the original amount is 200 mg and the half-life is 140 days, then the mass at time t is $m(t) = 200 \cdot 2^{-(t/140)}$. Alternatively $m(t) = 200 \cdot e^{-ct}$, where $100 = 200 \cdot e^{-(140c)}$, so $2 = e^{140c}$ and $c = \frac{\ln 2}{140}$.

Thus $m(t) = 200 \cdot e^{-(t \ln 2)/140}$.

(b) After 100 days, $m(100) = 200 \cdot 2^{-100/140} = 200 \cdot 2^{-5/7}$ 121.9013654. Alternatively $m(100) = 200 \cdot e^{-(100 \ln 2)/140}$ 121.9013654. About 121.9 mg will be left.

18. (a) With annual compounding, after two years the amount due will be $500 \cdot 1.14^2 = 649.8$, or \$649.80.

(b) With quarterly compounding, after two years the amount due will be $500 \cdot \left(1 + \frac{0.14}{4}\right)^8 = 500 \cdot 1.035^8 \quad 658.4045185$, or \$658.40.

(c) With monthly compounding, after two years the amount due will be $500 \cdot \left(1 + \frac{0.14}{12}\right)^{24}$ 660.4935501, or \$660.49.

(d) With daily compounding (barring leap years), after two years the amount due will be $500 \cdot \left(1 + \frac{0.14}{365}\right)^{730}$ 661.5293892, or \$661.53.

(e) With continuous compounding, after two years the amount due will be $500 \cdot e^{2 \cdot 0.14}$ 661.5649062, or \$661.56.

Section 3.6 (pg. 233):

2. $\sin^{-1}(0.5) = /6$ since $\sin(/6) = 0.5$ and -/2 /6 /2.

4.
$$\arctan(-1) = -\frac{1}{4}$$
 since $\tan(-\frac{1}{4}) = -1$ and $-\frac{1}{2} < -\frac{1}{4} < \frac{1}{2}$.

14. tan(arctan2) = 2, so $sec^{2}(arctan2) = 1 + tan^{2}(arctan2) = 1 + 2^{2} = 5$. But - /2 < arctan 2 < /2, so sec(arctan2) > 0, and $sec(arctan2) = \sqrt{5}$.

18. $\sin(\sin^{-1}(1/3)) = 1/3$, so $\cos(\sin^{-1}(1/3)) = \sqrt{1 - (1/3)^2} = 2\sqrt{2}/3$. Likewise $\sin(\sin^{-1}(2/3)) = 2/3$, so $\cos(\sin^{-1}(2/3)) = \sqrt{1 - (2/3)^2} = \sqrt{5}/3$. Thus $\sin[\sin^{-1}(1/3) + \sin^{-1}(2/3)] = \sin(\sin^{-1}(1/3))\cos(\sin^{-1}(2/3)) + \cos(\sin^{-1}(1/3))\sin(\sin^{-1}(2/3)) = \frac{1}{3} \frac{\sqrt{5}}{3} + \frac{2\sqrt{2}}{3} \frac{2}{3} = \frac{\sqrt{5} + 4\sqrt{2}}{9}$.

22. $\sin^2(\cos^{-1}x) = 1 - \cos^2(\cos^{-1}x) = 1 - x^2$. But $0 \cos^{-1}x$, so $\sin(\cos^{-1}x) = 0$, $\sin(\cos^{-1}x) = \sqrt{1-x^2}$, and $\sin(2\cos^{-1}x) = 2\cos(\cos^{-1}x)\sin(\cos^{-1}x) = 2x\sqrt{1-x^2}$.

30. If
$$f(x) = \sin^{-1}(2x - 1)$$
, then $f'(x) = \frac{1}{\sqrt{1 - (2x - 1)^2}}$ $2 = \frac{2}{\sqrt{4x - 4x^2}} = \frac{1}{\sqrt{x - x^2}}$.

38. If
$$F(t) = \sqrt{1-t^2} + \sin^{-1}t$$
, then $F'(t) = \frac{1}{2}\frac{(-2t)}{\sqrt{1-t^2}} + \frac{1}{\sqrt{1-t^2}} = \frac{1-t}{\sqrt{1-t^2}} = \sqrt{\frac{1-t}{1+t}}$.

48. If
$$y = x \sin x \csc^{-1} x$$
, then $y' = \sin x \csc^{-1} x + x \cos x \csc^{-1} x + x \sin x$ $-\frac{1}{x\sqrt{x^2 - 1}} = \sin x \csc^{-1} x + x \cos x \csc^{-1} x - \frac{\sin x}{\sqrt{x^2 - 1}}$.

64.
$$\lim_{x \to +} (x - x^2) = \lim_{x \to +} x(1 - x) = -$$
, so $\lim_{x \to +} \tan^{-1}(x - x^2) = -/2$.