MATHEMATICS 151

Assignment 10, due Friday 23 July 1999

Section 3.8 (pg. 247):

2. $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1}=\lim _{x \rightarrow 1} \frac{2 x+3}{1}=5$.

Or avoid L'Hospital's Rule with $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+4)}{x-1}=\lim _{x \rightarrow 1}(x+4)=5$.
10. $\lim _{x \rightarrow 3 \pi / 2} \frac{\cos x}{x-\frac{3 \pi}{2}}=\lim _{x \rightarrow 3 \pi / 2} \frac{-\sin x}{1}=1$.

Or avoid L'Hospital's Rule with $\lim _{x \rightarrow 3 \pi / 2} \frac{\cos x}{x-\frac{3 \pi}{2}}=\lim _{x \rightarrow 3 \pi / 2} \frac{\sin \left(x-\frac{3 \pi}{2}\right)}{x-\frac{3 \pi}{2}}=1$.
16. $\lim _{x \rightarrow 0} \frac{6^{x}-2^{x}}{x}=\lim _{x \rightarrow 0} \frac{6^{x} \ln 6-2^{x} \ln 2}{1}=\ln 6-\ln 2=\ln \frac{6}{2}=\ln 3$.

Or avoid L'Hospital's Rule in the following way.
Let $f(x)=6^{x}-2^{x}$. Then $f^{\prime}(x)=6^{x} \ln 6-2^{x} \ln 2$, so $f^{\prime}(0)=\ln 6-\ln 2=\ln \frac{6}{2}=\ln 3$.
But $\lim _{x \rightarrow 0} \frac{6^{x}-2^{x}}{x}=\lim _{x \rightarrow 0} \frac{\left(6^{x}-2^{x}\right)-\left(6^{0}-2^{0}\right)}{x-0}=f^{\prime}(0)$, from the definition of the derivative.
22. $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin x}{6 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{6}=-\frac{1}{6}$.
30. $\lim _{x \rightarrow 0} \frac{\sin (m x)}{\sin (n x)}=\lim _{x \rightarrow 0} \frac{m \cos (m x)}{n \cos (n x)}=\frac{m}{n}$.

Or avoid L'Hospital's Rule by writing $\lim _{x \rightarrow 0} \frac{\sin (m x)}{\sin (n x)}=\lim _{x \rightarrow 0} \frac{\frac{\sin (m x)}{\min (n x)}}{n x} \cdot \frac{m}{n}=\frac{1}{1} \cdot \frac{m}{n}=\frac{m}{n}$.
44. $\lim _{x \rightarrow 0^{+}} \sqrt{x} \sec x=0 \cdot 1=0$. L'Hospital's Rule is inapplicable.
48. $\lim _{x \rightarrow 0}(\csc x-\cot x)=\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x}=0$.
56. Let $y=(\sin x)^{(\tan x)}, 0<x<\pi / 2$. Then $\ln y=(\tan x)(\ln (\sin x))$.

So $\lim _{x \rightarrow 0^{+}} \operatorname{In} y=\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin x)}{\cot x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}}{-\csc ^{2} x}=\lim _{x \rightarrow 0^{+}}(-\sin x \cos x)=0$. Hence $\lim _{x \rightarrow 0^{+}} y=e^{0}=1$.
78. $\lim _{x \rightarrow+\infty} \frac{\ln x}{x^{p}}=\lim _{x \rightarrow+\infty} \frac{x^{-1}}{p x^{p-1}}=\lim _{x \rightarrow+\infty} \frac{1}{p x^{p}}=0$, if $p>0$.

Section 4.1 (pg. 260):

12. $f(x)=1+(x+1)^{2},-2 \leq x<5$. $f^{\prime}(x)=2(x+1),-2<x<5$ so $f^{\prime}(x)=0$ at $x=-1$. $f(-2)=2, f(-1)=1$, and since $(x+1)^{2} \geq 0, f(x)=1+(x+1)^{2} \geq 1$. The absolute minimum is $f(-1)=1$. Since $\lim _{x \rightarrow 5^{-}} f(x)=37>2=f(-2)$, there is no absolute maximum.
See graph below.
13. $f(\theta)=\tan \theta,-\pi / 4 \leq \theta<\pi / 2$. $f^{\prime}(\theta)=\sec ^{2} \theta,-\pi / 4<\theta<\pi / 2$. $f^{\prime}(\theta)=0$ never. Since $f(-\pi / 4)=-1 \leq f(\theta)$ for all $\theta \in[-\pi / 4, \pi / 2)$ and $\lim _{\theta \rightarrow \pi / 2^{-}} f(\theta)==+\infty$, the absolute minimum is $f(-\pi / 4)=-1$ and there is no absolute maximum.
See graph below.

For Exercise 12

For Exercise 16
20. $f(x)=\left\{\begin{array}{llr}x^{2} & \text { if }-1 \leq x<0 \\ 2-x^{2} & \text { if } \quad 0 \leq x \leq 1\end{array}\right.$

Note $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}=0$, but
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(2-x^{2}\right)=2$, so f is
discontinuous hence not differentiable
at 0 . $f^{\prime}(x)=0$ nowhere. $f(-1)=1, f(0)=2$, and $f(1)=1$, so the absolute maximum is $f(0)=2$ but there is no absolute minimum since although $f(x)>0$ for all $x \in[-1,1]$, $\lim _{x \rightarrow 0^{-}} f(x)=0$. See graph to the right.

For Exercise 20
26. $f(t)=t^{3}+6 t^{2}+3 t-1$.
$f^{\prime}(t)=3 t^{2}+12 t+3=3\left(t^{2}+4 t+1\right)=3(t+2+\sqrt{3})(t+2-\sqrt{3})$.
The critical numbers are $-2-\sqrt{3}$ and $-2+\sqrt{3}$.
34. $f(z)=\frac{z+1}{z^{2}+z+1}$, so $f^{\prime}(z)=\frac{\left(z^{2}+z+1\right)(1)-(z+1)(2 z+1)}{\left(z^{2}+z+1\right)^{2}}=\frac{-z^{2}-2 z}{\left(z^{2}+z+1\right)^{2}}=-\frac{z(z+2)}{\left(z^{2}+z+1\right)^{2}}$. The critical numbers are 0 and -2 .
46. $f(x)=18 x+15 x^{2}-4 x^{3}$ on $[-3,4]$.
$f^{\prime}(x)=18+30 x-12 x^{2}=-6\left(2 x^{2}-5 x-3\right)=-6(2 x+1)(x-3)$ on $(-3,4)$.
$f(-3)=189, f(-1 / 2)=-4.75, f(3)=81$, and $f(4)=56$.
The absolute maximum is $f(-3)=189$ and the absolute minimum is $f(-1 / 2)=-4.75$.
68. $g(x)=2+(x-5)^{3}$, so $g^{\prime}(x)=3(x-5)^{2}$ and g has a critical number at 5 . Since $g(x)<2$ if $x<5, g(5)=2$, and $g(x)>2$ if $x>5$, there is no local extremum at 5 .
72. (a) If $f(x)=x^{3}-3 x, f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=3(x+1)(x-1)$.

Since $f(-\sqrt{3})=0, f(-1)=2, f(0)=0, f(1)=-2$, and $f(\sqrt{3})=0$, there are two critical numbers, -1 and 1 , with a local maximum $f(-1)=2$ and a local minimum $f(1)=-2$.
If $g(x)=x^{3}, g^{\prime}(x)=3 x^{2}$. Since $g(x)<0$ if $x<0, g(0)=0$, and $g(x)>0$ if $x>0$, there is a single critical number, 0 , but $g(0)=0$ is neither a local minimum nor a local maximum.
If $h(x)=x^{3}+3 x, h^{\prime}(x)=3 x^{2}+3=3\left(x^{2}+1\right)$ and h has no critical numbers. The graph of $y=h(x)$ always rises as we move to the right, and there are no local extrema.
See graphs below.

$y=g(x)=x^{3}$
$y=h(x)=x^{3}+3 x$
(b) We cannot have more than two local extrema for a cubic polynomial function since the derivative of a cubic polynomial is a quadratic polynomial and can have at most two real roots. We have seen a case where there are two distinct local extrema. Although there can be just one critical number, in such cases the cubic either rises steadily or falls steadily, leveling out for a moment at the critical number. So there can't be just one local extremum. There certainly can be none, as our last two examples show!

