MATHEMATICS 151

Assignment 10, due Friday 23 July 1999
Section 3.8 (pg. 247):
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Or avoid L’'Hospital’s Rule in the following way.
Let f(x) =6% - 2X. Then f'(x) =6%In6 - 2XIn2, so f'(0) =In6 - In2 :Ing =1In3.
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Or avoid L’Hospital’'s Rule by writing XIi@gn0 sin(nx) - X%no sy " =
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44, I@i@rrgﬁ\/;secx =024 =0. L'Hospital's Rule is inapplicable.
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56. Let y=(sinx)@X), 0<x<p/2. Then Iny = (tan x)(In(sinx)).
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Section 4.1 (pg. 260):

12. fx)=1+(x+1)2, - 2£x<5. f(X)=2(x+1), -2<x<5so0 f(x)=0 at x=- 1.

f- 2)=2, f(- 1) =1, andsince (x+1)23 0, f(x) =1+ (x+1)23 1. The absolute

minimum is f(- 1) = 1. Since Ién% f(x) =37 > 2 =1(- 2), there is no absolute maximum.
«® 5

See graph below.

16. f(g)=tangq, - p/4 £q<p/2. f(q) =sec?q, - p/4 <q<p/2. f(g) =0 never. Since
f(- p/4) =- 1 £1(q) forall gl [- p/4, p/2) and (F!)im/2 f(g) = =+ ¥, the absolute minimum
q® p/2

is f(- p/4) =- 1 and there is no absolute maximum.
See graph below.
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at 0. f(x) =0 nowhere. f(- 1) =1, f(0) =2, is there is there
and f(1) =1, so the absolute maximum is
f(0) =2 but there is no absolute minimum
since although f(x) >0 for all xI [- 1, 1], (0.0)is X

XI(!Drré_ f(x) = 0. See graph to the right. not there

For Exercise 20



26. f(t)=t3+6t2+3t- 1.
F(1) =312+ 12t +3=3(2 + 4t + 1) =3(t+2+V/3 )(t+2- V3)
The critical numbers are - 2 - \/5_3 and -2+\/§.
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The critical numbers are 0 and - 2.
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so f'(z = =. .
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46. f(x) =18x +15x2- 4x3 on [- 3, 4].

f(x) =18 +30x - 12x2 =- 6(2x2- 5x - 3) =- 6(2x +1)(x - 3) on (- 3, 4).

f(- 3) =189, f(- 1/2) =- 4.75, f(3) =81, and f(4) = 56.

The absolute maximum is f(- 3) = 189 and the absolute minimum is f(- 1/2) = - 4.75.

68. g(x)=2+(x- 5)3, so g'(x)=3(x- 5)2 and g has a critical number at 5. Since
gx)<2 if x<5, g(b)=2, and g(x) >2 if x>5, there is no local extremum at 5.

72. (@) If f(x)=x3- 3x, f'(x)=3x2- 3=3(x2- 1)=3(x +1)(x- 1).

Since f(- J3 )=0, f(-1) =2, f(0)=0, f(1)=-2, and f(\/§) =0, there are two critical
numbers, - 1 and 1, with a local maximum f(- 1) =2 and a local minimum f(1) =- 2.
If g(x) =x3, g'(x) =3x2. Since g(x) <0 if x<0, g(0)=0, and g(x) >0 if x>0,
there is a single critical number, 0, but g(0) =0 is neither a local minimum nor a local
maximum.

If h(x) =x3+3x, h'(x) =3x2+3=3(x2+1) and h has no critical numbers. The graph
of y =h(x) always rises as we move to the right, and there are no local extrema.

See graphs below.
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(b) We cannot have more than two local extrema for a cubic polynomial
function since the derivative of a cubic polynomial is a quadratic polynomial and can
have at most two real roots. We have seen a case where there are two distinct local
extrema. Although there can be just one critical number, in such cases the cubic either
rises steadily or falls steadily, leveling out for a moment at the critical number. So there
can't be just one local extremum. There certainly can be none, as our last two examples
show!



