MATHEMATICS 151

Assignment 11, due Monday 26 July 1999

Section 4.2 (pg. 266):

4. $f(x)=\sin x+\cos x$ is continuous on $[0,2 \pi]$ and differentiable on $(0,2 \pi)$, and $f(0)=1=f(2 \pi)$. $f^{\prime}(c)=\cos c-\sin c$, so $f^{\prime}(c)=0$ when $\sin c=\cos c$, or tanc $=1$, at $c=\pi / 4$ and at $c=5 \pi / 4$.
5. If $f(x)=(x-1)^{-2}, f^{\prime}(x)=-2(x-1)^{-3}$ except at $x=1$. $f(0)=1=f(2)$.

Now $f^{\prime}(c)=0$ means $-2(c-1)^{-3}=0$, and this has no solution.
Rolle's Theorem is not contradicted. It doesn't apply because f is discontinuous (and not differentiable) at 1 , between 0 and 2 .
14. $f(x)=\sqrt{x}$ on $[1,4]$ is continuous there. $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ on $(1,4)$.
$\frac{f(4)-f(1)}{4-1}=\frac{\sqrt{4}-\sqrt{1}}{4-1}=\frac{1}{3}$. If $f^{\prime}(c)=\frac{1}{2 \sqrt{c}}=\frac{1}{3}$ then $2 \sqrt{c}=3$, and $c=\frac{9}{4}$.
22. Let $f(x)=x^{4}+4 x+c$.
$f^{\prime}(x)=4 x^{3}+4=4\left(x^{3}+1\right)=4(x+1)\left(x^{2}-x+1\right)=4(x+1)\left[\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right]$ has exactly one real zero, -1 .
$f(x)$ can't have three distinct real roots $p<q<r$; if it did there would be two values c_{1} and c_{2} with $p<c_{1}<q<c_{2}<r$ where $f^{\prime}\left(c_{1}\right)=0=f^{\prime}\left(c_{2}\right)$, by Rolle's Theorem.
So $f(x)=0$ has at most two real roots.
If $c<3$, it has two; if $c=3$, it has one; if $c>3$, it has none.
To see why, write $x^{4}+4 x+c=x^{4}+4 x+3+(c-3)=(x+1)^{2}\left[(x-1)^{2}+2\right]+(c-3)$.
Solving $x^{4}+4 x+c=0$ is the same as solving $(x+1)^{2}\left[(x-1)^{2}+2\right]=3-c$.
If $c<3,3-c>0$. The first factor $(x+1)^{2}$ is zero when $x=-1$ and grows as large as we please as x moves away from -1 in either direction. The second factor $\left[(x-1)^{2}+2\right]$ is always at least 2 . So when $3-c>0$, there will be two values of x, one on either side of -1 , where $(x+1)^{2}\left[(x-1)^{2}+2\right]=3-c$.
However if $c=3$, we have to solve $(x+1)^{2}\left[(x-1)^{2}+2\right]=0$, and that can only occur when $x=-1$.
If $c>3$ so that $3-c<0,(x+1)^{2}\left[(x-1)^{2}+2\right]=3-c$ can never happen.
26. $\frac{f(5)-f(2)}{5-2}=f^{\prime}(c)$ for some $c \in(2,5)$ by the Mean Value Theorem.

Thus $f(5)-f(2)=3 f^{\prime}(c)$. Since $1 \leq f^{\prime}(c) \leq 4,3 \leq f(5)-f(2) \leq 12$.
32. If $f^{\prime}(x)=c$ and if $g(x)=c x$ (so $\left.g^{\prime}(x)=c\right)$, then $f^{\prime}(x)=g^{\prime}(x)$ on any interval (a, b). Thus $f-g$ is some constant d on (a, b), and $f(x)=g(x)+d=c x+d$ on (a, b). Since (a, b) can be any interval, and you can catch any real number x inside some interval, $f(x)=c x+d$ on $(-\infty,+\infty)$.
36. Let $\mathrm{v}(\mathrm{t})$ be the velocity (measured in mi / h) at time t (measured in hours).

Then $\frac{v(13 / 6)-v(2)}{13 / 6-2}=\frac{50-30}{1 / 6}=120$.
By the Mean Value Theorem $a(c)=v^{\prime}(c)=120$ for some $c, 2<c<13 / 6$.
So some time between 2:00 P.M. and 2:10 P.M. the acceleration was exactly $120 \mathrm{mi} / \mathrm{h}^{2}$.

Section 4.3 (pg. 272):

6. $f(x)=x^{3}-2 x^{2}+x$, so
$f^{\prime}(x)=3 x^{2}-4 x+1=(3 x-1)(x-1)$.
$f^{\prime}(x)<0$ on $(1 / 3,1), f^{\prime}(x)>0$
$f^{\prime}(x)>0$ on $(-\infty, 1 / 3) \cup(1,+\infty)$,
and $f^{\prime}(1 / 3)=f^{\prime}(1)=0$.
f is increasing on $(-\infty, 1 / 3] \cup[1,+\infty)$, decreasing on [1/3, 1], has local maximum $f(1 / 3)=4 / 27$, and has local minimum $f(1)=0$.
$\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow+\infty} f(x)=+\infty$, so there are no absolute extrema.
See graph to the right.

For Exercise 6
14. $f(x)=x^{2 / 3}(x-2)^{2}$, so $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}(x-2)^{2}+2 x^{2 / 3}(x-2)=$
$=\frac{2}{3} x^{-1 / 3}(x-2)[(x-2)+3 x]=\frac{2}{3} x^{-1 / 3}(x-2)(4 x-2)=\frac{4}{3} x^{-1 / 3}(x-2)(2 x-1)$.
$f^{\prime}(x)<0$ on $(-\infty, 0) \cup(0.5,2), f^{\prime}(x)>0$ on $(0,0.5) \cup(2,+\infty), f^{\prime}(0.5)=f^{\prime}(2)=0$;
$f^{\prime}(0)$ does not exist.
f is increasing on $[0,0.5] \cup[2,+\infty)$, decreasing on $(-\infty, 0] \cup[0.5,2]$, has absolute minima $f(0)=f(2)=0$, and has local maximum $f(0.5)=1.125 \sqrt[3]{2}$.
Since $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=+\infty$, there is no absolute maximum.
See graph below.

For Exercise 14
22. $f(x)=x^{5}+4 x^{3}-6$, so
$f^{\prime}(x)=5 x^{4}+12 x^{2}=x^{2}\left(5 x^{2}+12\right)$.
Thus $f^{\prime}(x)>0$ everywhere except at $x=0$, and f is increasing on $(-\infty,+\infty)$ (though it levels off for a moment at the origin).
32. $g(x)=\sin x-\cos x,-\pi / 2 \leq x \leq \pi / 2$.
$g^{\prime}(x)=\cos x+\sin x$, so $g^{\prime}(x)<0$ on $(-\pi / 2,-\pi / 4)$
and $g^{\prime}(x)>0$ on $(-\pi / 4, \pi / 2)$.
$g(-\pi / 2)=-1, g(-\pi / 4)=-\sqrt{2}$, and $g(\pi / 2)=1$, so $g(-\pi / 4)=-\sqrt{2}$ is an absolute minimum and $g(\pi / 2)=1$ is an absolute maximum.

For Exercise 32

See graph to the right.
40. Let $f(x)=\tan x-x, 0 \leq x<\pi / 2$. Then $f^{\prime}(x)=\sec ^{2} x-1=\tan ^{2} x$, $f^{\prime}(x)>0$ on ($0, \pi / 2$), and $f(x)$ is increasing on $[0, \pi / 2)$.
Since $f(0)=0, f(x)>0$ on $(0, \pi / 2)$, and thus $\tan x>x$ on $(0, \pi / 2)$.

Section 4.4 (pg. 277):

4. $f(x)=2 x^{3}+5 x^{2}-4 x$,
so $f^{\prime}(x)=6 x^{2}+10 x-4=$ $=2\left(3 x^{2}+5 x-2\right)=2(3 x-1)(x+2)$ and $f^{\prime \prime}(x)=12 x+10=2(6 x+5)$.
$f^{\prime}(x)<0$ on $(-2,1 / 3)$,
$f^{\prime}(x)>0$ on $(-\infty,-2) \cup(1 / 3,+\infty)$, and $f^{\prime}(-2)=f^{\prime}(1 / 3)=0$.
f increases on $(-\infty,-2] \cup[1 / 3,+\infty)$, decreases on $[-2,1 / 3]$, has local maximum $f(-2)=12$, and has local minimum $f(1 / 3)=-19 / 27$.
$\lim _{x \rightarrow-\infty} f(x)=-\infty$, while $\lim _{x \rightarrow+\infty} f(x)=+\infty$, and thus
there are no absolute extrema.

$f^{\prime \prime}(x)<0$ on $(-\infty,-5 / 6)$,
For Exercise 4
$f^{\prime \prime}(x)>0$ on $(-5 / 6,+\infty)$,
and $f "(-5 / 6)=0$. The graph of $y=f(x)$ is concave downward in $(-\infty,-5 / 6)$ and concave upward in $(-5 / 6,+\infty)$, and there is an inflection point at $(-5 / 6,305 / 54)$.
See graph above and to the right.
5. $P(x)=x \sqrt{x+1}$ on $[-1,+\infty)$.
$P^{\prime}(x)=\frac{3 x+2}{2(x+1)^{1 / 2}}$ and $P^{\prime \prime}(x)=\frac{3 x+4}{4(x+1)^{3 / 2}}$
on $(-1,+\infty)$, so $\mathrm{P}^{\prime}(\mathrm{x})<0$ on
$(-1,-2 / 3), \mathrm{P}^{\prime}(x)>0$ on $(-2 / 3,+\infty)$, and $P^{\prime}(-2 / 3)=0$.
P decreases on $[-1,-2 / 3)]$, increases on $[-2 / 3,+\infty)$,
and has an absolute minimum
$\mathrm{P}(-2 / 3)=-\frac{2}{3 \sqrt{3}}$.
$\lim _{x \rightarrow+\infty} P(x)=+\infty$, and thus
there is no absolute maximum.
There are no other local extrema.

For Exercise 10
$P^{\prime \prime}(x)>0$ on $(-1,+\infty)$, so the graph of $y=P(x)$ is concave upward everywhere and there are no inflection points.
See graph above and to the right.
14. $f(t)=t+\cos t$, so $f^{\prime}(t)=1-\sin t$.

Then $f^{\prime}(t)>0$ except when t is of the
form $\frac{4 \mathrm{k}+1}{2} \pi, \mathrm{k}$ an integer.
Thus f is increasing everywhere, leveling off momentarily at each value $\frac{4 \mathrm{k}+1}{2} \pi$. There are no local extrema.
$f^{\prime \prime}(t)=-\cos t$, so $f^{\prime \prime}(t)>0$ on each interval $\left(\frac{4 \mathrm{k}+1}{2} \pi, \frac{4 \mathrm{k}+3}{2} \pi\right)$ where the graph of $y=f(t)$ is concave upward, and $\mathrm{f}^{\prime \prime}(\mathrm{t})<0$ on each interval $\left(\frac{4 \mathrm{k}-1}{2} \pi, \frac{4 \mathrm{k}+1}{2} \pi\right)$ where the graph of $y=f(t)$ is concave downward. The inflection points are the points $\left(\frac{2 n+1}{2} \pi, \frac{2 n+1}{2} \pi\right)$.

For Exercise 14

See graph to the right.
38. If $f(x)=x^{4}$, then $f^{\prime}(x)=4 x^{3}$ and $f^{\prime \prime}(x)=12 x^{2}$ so $f^{\prime \prime}(0)=0$. But $f^{\prime \prime}(x)>0$ in $(-\infty, 0) \cup(0,+\infty)$ so the graph of $y=f(x)$ is concave upward in $(-\infty, 0) \cup(0,+\infty)$. Since the concavity does not change there, the point $(0,0)$ is not an inflection point.
42. If $g(x)=(f(x))^{2}, g^{\prime}(x)=2 f(x) f^{\prime}(x)$ and $g^{\prime \prime}(x)=2\left(f^{\prime}(x)\right)^{2}+2 f(x) f^{\prime \prime}(x) \geq 2 f(x) f^{\prime \prime}(x)>0$ on I if $f(x)>0$ and $f^{\prime \prime}(x)>0$ on I.

