MATHEMATICS 151

Assignment 14, due Friday 06 August 1999

Section 9.4 (pg. 552):

2. $x = 3 \cos 0 = 3$ and $y = 3 \sin 0 = 0$. Other polar coordinates: (3, 2), (-3,). There are infinitely many more: (3, 2n) and (-3, (2n + 1)), n any integer. See graph to the right.

6. $x = (-1) \cos = 1$ and $y = (-1) \sin = 0$. Other polar coordinates: (1, 0), (-1, 3). There are infinitely many more: (1, 2n) and (-1, (2n + 1)), n any integer. See graph to the right.

 $x = (-2)\cos(-5/6) = \sqrt{3}$

and $y = (-2)\sin(-5/6) = 1$.

See graph below and to the right.

16. If (x, y) = (3, 4) and r > 0, $r = \sqrt{3^2 + 4^2} = 5$. If 0 < 2 then tan = 4/3, so $= \tan^{-1}(4/3)$ since (3, 4) is in the first quadrant and r > 0. Polar coordinates: $(5, \tan^{-1}(4/3))$.

18. 0 /3.

See graph below.

12.

22. - 1 r 1, /4 3 /4. See graph below.

24.
$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(r_1 \cos_1 - r_2 \cos_2)^2 + (r_1 \sin_1) - r_2 \sin_2)^2} =$$

36. $x^2 - y^2 = 1$, so $r^2(\cos^2 - \sin^2) = 1$, $r^2 \cos(2) = 1$, $r^2 = \sec(2)$, and $r = \pm \sqrt{\sec(2)}$.

66. r = ln so $\frac{dr}{d} = \frac{1}{}$, and $\frac{dy}{dx} = \frac{\frac{dr}{d} \sin + r\cos}{\frac{dr}{d} \cos - r\sin} = \frac{\frac{\sin}{\cos} + \cos \ln}{\frac{\cos}{\cos} - \sin \ln}$. At = e, $\frac{dy}{dx} = \frac{\frac{\sin e}{e} + \cos e \ln e}{\frac{\cos e}{e} - \sin e \ln e} = \frac{\sin e + e \cos e}{\cos e - e \sin e}$. 70. $r = \cos + \sin so \frac{dr}{d} = -sin + \cos s$. For a horizontal tangent, $\frac{dr}{d} \sin + r \cos s = 0$. Hence $-\sin^2 + \sin \cos s + \cos^2 + \cos sin s = 0$, or $\cos(2) + \sin(2) = 0$, and $\tan(2) = -1$, so that $= -\frac{\pi}{8} + \frac{\pi}{2}$, n an integer. The corresponding points are the points with these values of and at which $r = \cos + \sin sin s$. For a vertical tangent, $\frac{dr}{d} \cos - r \sin sin s = 0$. Hence $-\cos \sin + \cos^2 - \cos \sin - \sin^2 = 0$, or $\cos(2) - \sin(2) = 0$, and $\tan(2) = 1$, so that $= \frac{1}{8} + \frac{1}{2}$, n an integer. The corresponding points are the points with these values of and at which $r = \cos + \sin$.

It is possible (using the double angle formulas to express $\cos(/4)$ in terms of $\cos(/8)$ or $\sin(/8)$) to find the values of $\cos(/8)$ and $\sin(/8)$ and obtain closed form expressions for the values of r, using radicals.

Section 9.6 (pg. 564):

2. $x = -5 y^2$ so $y^2 = -\frac{1}{5} x$. Hence $p = -\frac{1}{20}$. The vertex is (0, 0), the focus is (- 1/20, 0), and the directrix is x = 1/20. See graph to the right.

10. $\frac{x^2}{4} + \frac{y^2}{25} = 1$. The centre is (0, 0). The vertices are (0, ± 5). so the foci are (0, ± $\sqrt{21}$). See graph below.

For Exercise 14

24. If a parabola has focus (1, -1) and directrix y = 5 then its vertex is (1, 2). Since p = -3, its equation is $(x - 1)^2 = -12(y - 2)$, or $y = -\frac{1}{12}x^2 + \frac{1}{6}x + \frac{23}{12}$. See graph above.

For Exercise 32

For Exercise 34

34. If a hyperbola has foci $(\pm 6, 0)$ and vertices $(\pm 4, 0)$ then its centre is (0, 0). Since $\sqrt{36-16} = 2\sqrt{5}$, the hyperbola has equation $\frac{x^2}{16} - \frac{y^2}{20} = 1$. See graph above.

38. If a hyperbola has foci (2, 2) and (6, 2), $\frac{(x-4)^2}{2}$ then its centre must be (4, 2). The asymptote equations y = x - 2 and y = 6 - xmay be rewritten as $y - 2 = \pm (x - 4)$. So the hyperbola's equation is $\frac{(x-4)^2}{a^2} - \frac{(y-2)^2}{a^2} = 1.$ From the focus information, $2 a^2 = 4$, so $a = \sqrt{2}$. ς, ົດ The hyperbola has equation $\frac{(x-4)^2}{2} - \frac{(y-2)^2}{2} = 1.$ Х See graph to the right. (a) If $y^2 = 4 p x$ 46. then $\frac{dx}{dy} = \frac{2y}{4p} = \frac{y}{2p}$ hence $\frac{dy}{dx} = \frac{2p}{y}$. For Exercise 38 y At (x_0, y_0) , $\frac{dy}{dx} = \frac{2p}{y_0}$ Directrix x =(x₀, y₀) so the tangent line at (x_0, y_0) has equation $\begin{array}{l} y - y_0 = \frac{2p}{y_0} \left(x - x_0 \right), \\ \text{or } y_0 \, y - y_0^2 = 2 \, p \, x - 2 \, p \, x_0. \\ \text{But } y_0^2 = 4 \, p \, x_0, \end{array}$ Ι σ so the equation is Focus $y_0 y = 2 p(x + x_0)$. (p, 0) $(-x_0, 0)$ > x (b) To find the x-intercept of the tangent line, put y = 0 in the tangent line equation, obtaining $0 = 2 p(x + x_0)$; the x-intercept is $-x_0$. To obtain the tangent line quickly, draw the line through $(-x_0, 0)$ and $(x_0, y_0).$ For Exercise 46