MATHEMATICS 151

Assignment 14, due Friday 06 August 1999

Section 9.4 (pg. 552):
2. $x=3 \cos 0=3$ and $y=3 \sin 0=0$.

Other polar coordinates: $(3,2 \pi)$, $(-3, \pi)$.
There are infinitely many more:
($3,2 \mathrm{n} \pi$) and $(-3,(2 \mathrm{n}+1) \pi)$, n any integer.
See graph to the right.

For Exercise 2
6. $\quad x=(-1) \cos \pi=1$ and $y=(-1) \sin \pi=0$.

Other polar coordinates: $(1,0),(-1,3 \pi)$.
There are infinitely many more:
($1,2 \mathrm{n} \pi$) and ($-1,(2 \mathrm{n}+1) \pi$), n any integer.
See graph to the right.
12. $\mathrm{x}=(-2) \cos (-5 \pi / 6)=\sqrt{3}$
and $y=(-2) \sin (-5 \pi / 6)=1$.
See graph below and to the right.
16. If $(x, y)=(3,4)$ and $r>0, r=\sqrt{3^{2}+4^{2}}=5$. If $0 \leq \theta<2 \pi$ then $\tan \theta=4 / 3$, so $\theta=\tan ^{-1}(4 / 3)$

For Exercise 6

For Exercise 12 since $(3,4)$ is in the first quadrant and $r>0$. Polar coordinates: $\left(5, \tan ^{-1}(4 / 3)\right)$.
18. $0 \leq \theta \leq \pi / 3$.

See graph below.

The origin is included.
22. $-1 \leq r \leq 1, \pi / 4 \leq \theta \leq 3 \pi / 4$.

See graph below.

24. $D=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\sqrt{\left.\left(r_{1} \cos \theta_{1}-r_{2} \cos \theta_{2}\right)^{2}+\left(r_{1} \sin \theta_{1}\right)-r_{2} \sin \theta_{2}\right)^{2}}=$
36. $x^{2}-y^{2}=1$, so $r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=1, r^{2} \cos (2 \theta)=1, r^{2}=\sec (2 \theta)$, and $r= \pm \sqrt{\sec (2 \theta)}$.
44. $r=1+\cos \theta$.

See graph below.

50. $r=2+\cos \theta$.

See graph below.

52. $r=2 \cos (3 \theta)$. See graph below and to the right.
66. $r=\ln \theta$ so $\frac{d r}{d \theta}=\frac{1}{\theta}$, and $\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}=\frac{\frac{\sin \theta}{\theta}+\cos \theta \ln \theta}{\frac{\cos \theta}{\theta}-\sin \theta \ln \theta}$.
At $\theta=e, \frac{d y}{d x}=\frac{\frac{\sin e}{e}+\operatorname{coseln} e}{\frac{\cos e}{e}-\operatorname{sinelne}}=\frac{\sin e+e \operatorname{cose}}{\cos e-e \sin e}$.
70. $r=\cos \theta+\sin \theta$ so $\frac{d r}{d \theta}=-\sin \theta+\cos \theta$.

For Exercise 52

For a horizontal tangent, $\frac{d r}{d \theta} \sin \theta+r \cos \theta=0$.
Hence $-\sin ^{2} \theta+\sin \theta \cos \theta+\cos ^{2} \theta+\cos \theta \sin \theta=0$, or $\cos (2 \theta)+\sin (2 \theta)=0$, and $\tan (2 \theta)=-1$, so that $\theta=-\frac{\pi}{8}+\frac{n}{2} \pi$, n an integer.
The corresponding points are the points with these values of θ and at which $r=\cos \theta+\sin \theta$.
For a vertical tangent, $\frac{d r}{d \theta} \cos \theta-r \sin \theta=0$.

Hence $-\cos \theta \sin \theta+\cos ^{2} \theta-\cos \theta \sin \theta-\sin ^{2} \theta=0$, or $\cos (2 \theta)-\sin (2 \theta)=0$, and $\tan (2 \theta)=1$, so that $\theta=\frac{\pi}{8}+\frac{n}{2} \pi$, n an integer.
The corresponding points are the points with these values of θ and at which $r=\cos \theta+\sin \theta$.
It is possible (using the double angle formulas to express $\cos (\pi / 4)$ in terms of $\cos (\pi / 8)$ or $\sin (\pi / 8)$) to find the values of $\cos (\pi / 8)$ and $\sin (\pi / 8)$ and obtain closed form expressions for the values of r, using radicals.

Section 9.6 (pg. 564):

2. $x=-5 y^{2}$ so $y^{2}=-\frac{1}{5} x$.

Hence $p=-\frac{1}{20}$.
The vertex is $(0,0)$, the focus is $(-1 / 20,0)$, and the directrix is $x=1 / 20$.
See graph to the right.
10. $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$.

The centre is $(0,0)$.
The vertices are $(0, \pm 5)$.
so the foci are $(0, \pm \sqrt{21})$.
See graph below.

For Exercise 2

$$
\frac{x^{2}}{4}+\frac{y^{2}}{25}=1
$$

For Exercise 10
14. $\frac{\mathrm{y}^{2}}{25}-\frac{\mathrm{x}^{2}}{144}=1$.

The centre is $(0,0)$.
The asymptotes are $\mathrm{y}= \pm \frac{5}{12} \mathrm{x}$.
The vertices are $(0, \pm 5)$. $\sqrt{25+144}=13$ so the foci are $(0, \pm 13)$. See graph below.

For Exercise 14
18. $16 x^{2}-9 y^{2}+64 x-90 y=305$.
$16(x+2)^{2}-9(y+5)^{2}=144$.
The centre is $(-2,-5)$.
$\frac{(x+2)^{2}}{9}-\frac{(y+5)^{2}}{16}=1$.
The vertices are $(-5,-5)$
and $(1,-5)$.
The asymptotes are
$y+5= \pm \frac{4}{3}(x+2)$, or
$3 y-4 x+7=0$ and
$3 y+4 x+23=0$.
$\sqrt{9+16}=5$ so the foci are $(-7,-5)$ and $(3,-5)$.
See graph to the right.
20. $x^{2}+2 y^{2}-6 x+4 y+7=0$. $(x-3)^{2}+2(y+1)^{2}=4$.
The centre is $(3,-1)$.
$\frac{(x-3)^{2}}{4}+\frac{(y+1)^{2}}{2}=1$, so the vertices are $(1,-1)$ and $(5,-1)$. $\sqrt{4-2}=\sqrt{2}$ so the foci are $(3-\sqrt{2},-1)$ and $(3+\sqrt{2},-1)$.

For Exercise 18

See graph below.

For Exercise 20

For Exercise 24
24. If a parabola has focus $(1,-1)$ and directrix $y=5$ then its vertex is $(1,2)$. Since $p=-3$, its equation is $(x-1)^{2}=-12(y-2)$, or $y=-\frac{1}{12} x^{2}+\frac{1}{6} x+\frac{23}{12}$. See graph above.
28. If an ellipse has foci $(0, \pm 4)$ and vertices $(0, \pm 5)$ then its centre is $(0,0)$. $\sqrt{25-16}=3$ so the ellipse
has equation $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$.
See graph to the right.
32. If an ellipse has foci $(\pm 2,0)$ its centre is $(0,0)$.

Suppose its equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
From the focus information, $a^{2}-b^{2}=4$,
so the equation is $\frac{x^{2}}{b^{2}+4}+\frac{y^{2}}{b^{2}}=1$.
Using the fact that $(2,1)$ is on the ellipse,
$\frac{4}{b^{2}+4}+\frac{1}{b^{2}}=1$, so $5 b^{2}+4=b^{2}\left(b^{2}+4\right)$,
$b^{4}-b^{2}-4=0$, and $b^{2}=\frac{1 \pm \sqrt{17}}{2}$.

For Exercise 28

The - sign must be rejected because b^{2} cannot be negative, so $b^{2}=\frac{1+\sqrt{17}}{2}$ and $a^{2}=b^{2}+4=\frac{9+\sqrt{17}}{2}$. The ellipse has equation $\frac{x^{2}}{\frac{9+\sqrt{17}}{2}}+\frac{y^{2}}{\frac{1+\sqrt{17}}{2}}=1$.
See graph below.

For Exercise 32

For Exercise 34
34. If a hyperbola has foci $(\pm 6,0)$ and vertices $(\pm 4,0)$ then its centre is $(0,0)$. Since $\sqrt{36-16}=2 \sqrt{5}$, the hyperbola has equation $\frac{x^{2}}{16}-\frac{y^{2}}{20}=1$. See graph above.
38. If a hyperbola has foci $(2,2)$ and $(6,2)$, then its centre must be $(4,2)$.
The asymptote equations $y=x-2$ and $y=6-x$ may be rewritten as $y-2= \pm(x-4)$.
So the hyperbola's equation is $\frac{(x-4)^{2}}{a^{2}}-\frac{(y-2)^{2}}{a^{2}}=1$.
From the focus information, $2 \mathrm{a}^{2}=4$, so $\mathrm{a}=\sqrt{2}$.
The hyperbola has equation $\frac{(x-4)^{2}}{2}-\frac{(y-2)^{2}}{2}=1$.
See graph to the right.
46. (a) If $y^{2}=4 \mathrm{px}$
then $\frac{d x}{d y}=\frac{2 y}{4 p}=\frac{y}{2 p}$

For Exercise 38
hence $\frac{d y}{d x}=\frac{2 p}{y}$.
At $\left(x_{0}, y_{0}\right), \frac{d y}{d x}=\frac{2 p}{y_{0}}$ so the tangent line at (x_{0}, y_{0}) has equation
$y-y_{0}=\frac{2 p}{y_{0}}\left(x-x_{0}\right)$, or $y_{0} y-y_{0}^{2}=2 p x-2 p x_{0}$.
But $y_{0}^{2}=4 \mathrm{px}_{0}$, so the equation is
$y_{0} y=2 p\left(x+x_{0}\right)$.
(b) To find the x-intercept of the tangent line, put $y=0$ in the tangent line equation, obtaining $0=2 p\left(x+x_{0}\right)$; the x-intercept is $-x_{0}$. To obtain the tangent line quickly, draw the line through ($-x_{0}, 0$) and ($\mathrm{x}_{0}, \mathrm{y}_{0}$).

For Exercise 46

