Definition of a vector space over \mathbb{R}

A vector space over \mathbb{R} is a set V of vectors together with a distinguished vector 0 in V and three functions

$$
\begin{aligned}
(\boldsymbol{u}, \boldsymbol{v}) & \mapsto \boldsymbol{u}+\boldsymbol{v} & & (\boldsymbol{u}, \boldsymbol{v} \in V) \\
\boldsymbol{v} & \mapsto-\boldsymbol{v} & & (\boldsymbol{v} \in V) \\
(r, \boldsymbol{v}) & \mapsto r \boldsymbol{v} & & (r \in \mathbb{R}, \boldsymbol{v} \in V)
\end{aligned}
$$

which satisfy

A1 $\quad(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$	associative law
A2 $\quad \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$	commutative law
A3 $\quad \mathbf{0}+\boldsymbol{u}=\boldsymbol{u}$	additive identity
A4 $\quad \boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$	additive inverse
S1 $\quad r(\boldsymbol{u}+\boldsymbol{v})=r \boldsymbol{u}+r \boldsymbol{v}$	distributivity
S2 $\quad(r+s) \boldsymbol{u}=r \boldsymbol{u}+s \boldsymbol{u}$	distributivity
S3 $\quad r(s \boldsymbol{u})=(r s) \boldsymbol{u}$	associative law
S4 $1 \boldsymbol{u}=\boldsymbol{u}$	scale preservation

for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $r, s \in \mathbb{R}$.

