Definition of a vector space over $\ensuremath{\mathbb{R}}$

A vector space over \mathbb{R} is a set V of vectors together with a distinguished vector **0** in V and three functions $(u, v) \mapsto u + v \qquad (u, v \in V)$

$(oldsymbol{u},oldsymbol{v})\mapstooldsymbol{u}+oldsymbol{v}$	$(oldsymbol{u},oldsymbol{v}\in V)$
$oldsymbol{v}\mapsto -oldsymbol{v}$	$(\boldsymbol{v}\in V)$
$(r, \boldsymbol{v}) \mapsto r \boldsymbol{v}$	$(r \in \mathbb{R}, \boldsymbol{v} \in V)$

which satisfy

A1	(u + v) + w = u + (v + w)	associative law
A2	u + v = v + u	commutative law
A3	$0 + oldsymbol{u} = oldsymbol{u}$	additive identity
A4	$oldsymbol{u}+(-oldsymbol{u})=oldsymbol{0}$	additive inverse
S1	$r(\boldsymbol{u} + \boldsymbol{v}) = r\boldsymbol{u} + r\boldsymbol{v}$	distributivity
S2	$(r+s)\boldsymbol{u} = r\boldsymbol{u} + s\boldsymbol{u}$	distributivity
S3	$r(s\boldsymbol{u}) = (rs)\boldsymbol{u}$	associative law
S4	$1\boldsymbol{u} = \boldsymbol{u}$	scale preservation

for all $\boldsymbol{u}, \, \boldsymbol{v}, \, \boldsymbol{w} \in V$ and $r, \, s \in \mathbb{R}$.