# Math 232, Elementary Linear Algebra <br> J. Hebron, Spring 2000 <br> Final Examination 

Tuesday, April 18th, 2000
Time: 3 hours


Student ID Number
$\square$
Name
(Please underline your family name)


Signature

## Instructions:

- Please fill-in the above information in ink.
- Do not open this exam until told to do so.
- No books, no calculators, no cell phones.
- One 8.5 by 11 inch formula sheet (two-sided) allowed.
- The total point value of each problem or part thereof is shown in square brackets.
- Please sign the bottom of every page (in case your exam becomes unstapled)

| Quest. \#: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mark: |  |  |  |  |  |  |  |  |  |  |  |
| Out of: | 4 | 3 | 2 | 3 | 6 | 2 | 12 | 12 | 6 | 2 | 8 |


| Quest. \#: | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | Tot |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mark: |  |  |  |  |  |  |  |  |  |  |  |
| Out of: | 12 | 5 | 15 | 5 | 12 | 16 | 7 | 6 | 4 | 8 | 150 |

## [points]

1. Assume that we live in a 3-dimensional subspace of a 7-dimensional Euclidean space, but we are unaware of the other 4 dimensions, until one day an inventor makes a hyperspace ship capable of travelling in the other dimensions. On the maiden voyage, the hyperspace ship travels from $(0,0,0,0,0,0,0)$ to ( $2,-3,4,-2,1,-1,1$ ) km.
(a) What is the total distance travelled by the hyperspace ship?
(b) What is the cosine of the angle between the direction travelled by the hyperspace ship and the $x$-axis? (Assume the $x$-axis is in the direction $[1,0,0,0,0,0,0]$. )
2. Let $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots \overrightarrow{\mathbf{a}}_{5}$ be five non-zero non-parallel vectors in $\mathfrak{R}^{7}$, and let $W=\operatorname{sp}\left(\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots \overrightarrow{\mathbf{a}}_{5}\right)$. Suppose $W$ is a 4-dimensional hyperplane in $\mathfrak{R}^{7}$. Explain how this can be.
3. Let $\mathbf{A}$ be a matrix having column vectors $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots \overrightarrow{\mathbf{a}}_{k} \in \mathfrak{R}^{n}$, and let $\overrightarrow{\mathbf{b}}=\left[b_{1}, b_{2}, \ldots b_{k}\right] \in \mathfrak{R}^{k}$. What is $\mathbf{A} \overrightarrow{\mathbf{b}}$ ?
4. Let $\mathbf{A}$ be a matrix having column vectors $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots \overrightarrow{\mathbf{a}}_{k} \in \mathfrak{R}^{n}$, and let $\mathbf{B}$ be a matrix having row vectors $\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{b}}_{2}, \ldots \overrightarrow{\mathbf{b}}_{m} \in \mathfrak{R}^{n}$. Given that $\overrightarrow{\mathbf{a}}_{i} \bullet \overrightarrow{\mathbf{b}}_{j}=0$ when $i \neq j$, and $\overrightarrow{\mathbf{a}}_{i} \bullet \overrightarrow{\mathbf{b}}_{i}=1$, what is BA? (Assume $k>m$.)
5. (a) What is the elementary matrix which swaps the first and fifth rows of a 7 by 7 matrix?
(b) What is the elementary matrix which adds 5 times the fifth row of a 5 by 5 matrix to its second row?
(c) What is the relationship between elementary matrices and invertible matrices?
6. Let $W=\operatorname{sp}\left(\overrightarrow{\mathbf{w}}_{1}, \overrightarrow{\mathbf{w}}_{2}, \ldots \overrightarrow{\mathbf{w}}_{7}\right)$, where $\overrightarrow{\mathbf{w}}_{1}, \overrightarrow{\mathbf{w}}_{2}, \ldots \overrightarrow{\mathbf{w}}_{7} \in \mathfrak{R}^{5}$, and let $\mathbf{A}$ be the matrix having column vectors $\overrightarrow{\mathbf{w}}_{1}, \overrightarrow{\mathbf{w}}_{2}, \ldots \overrightarrow{\mathbf{w}}_{7}$. Suppose the Row-Echelon form of $\mathbf{A}$ is:

$$
\left[\begin{array}{ccccccc}
5 & 3 & 2 & -4 & -2 & 3 & 5 \\
0 & -3 & 4 & 1 & -2 & 5 & -1 \\
0 & 0 & 0 & 1 & -4 & -1 & -4 \\
0 & 0 & 0 & 0 & -2 & -4 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find a basis for $W$.
7. Let $\mathbf{B}$ be a real $n$ by $m$ matrix and let $\mathbf{C}$ be a real $m$ by $n$ matrix, where $m<n$. Let $\mathbf{A}=\mathbf{B C}$.
(a) Prove: nullity $(\mathbf{A}) \geq n-m$.
(b) If A represents a linear transformation $\mathbf{T}$, is $\mathbf{T}$ one-to-one? Why or why not?
8. The axioms defining an abstract vector space are given as follows:
A1: $\quad(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}}+(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})$
S1: $\quad r(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=r \overrightarrow{\mathbf{v}}+r \overrightarrow{\mathbf{w}}$
A2: $\quad \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{w}}+\overrightarrow{\mathbf{v}}$
A3: $\quad \overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}$
S2: $\quad(r+s) \overrightarrow{\mathbf{v}}=r \overrightarrow{\mathbf{v}}+s \overrightarrow{\mathbf{v}}$
A4: $\quad \overrightarrow{\mathbf{v}}+(-\overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{0}}$
S3: $\quad r(s \overrightarrow{\mathbf{v}})=(r s) \overrightarrow{\mathbf{v}}$
S4: $\quad 1 \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}$

The set $\mathfrak{R}^{2}$ with a weird vector addition " $\oplus$ " defined by:

$$
[x, y] \oplus[a, b]=[x+a+q, y+b]
$$

and a weird scalar multiplication defined by:

$$
r[x, y]=[r x+r q-q, r y],
$$

where $q$ is a real constant, is a vector space.
(a) Verify axioms A3, A4, and S4.
(b) Note $r[0,0]=[r q-q, 0] \neq[0,0]$. Does this contradict the theorem that $r \overrightarrow{\boldsymbol{0}}=\overrightarrow{\boldsymbol{0}}$ ? Why or why not?
9. (a) Give an example of a vector space $\mathbf{V}$ which is not finitely generated. What is its basis?
(Before answering this question, read parts (b) and (c).)
(b) Give an example of a proper subspace of $\mathbf{V}$ which is also not finitely generated. What is its basis?
(c) Give an example of a proper subspace of $\mathbf{V}$ which is finitely generated. What is its basis?
10. Can an $n$-dimensional vector space be isomorphic to an $m$-dimensional vector space, where $m \neq n$ ? Explain.
11. Let a polynomial $p(x)$ be defined by the by the following determinant:

$$
p(x)=\left|\begin{array}{cccccc}
1 & a_{1} & a_{1}^{2} & a_{1}^{3} & \cdots & a_{1}^{n} \\
1 & a_{2} & a_{2}^{2} & a_{2}^{3} & \cdots & a_{2}^{n} \\
1 & a_{3} & a_{3}^{2} & a_{3}^{3} & \cdots & a_{3}^{n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & a_{n} & a_{n}^{2} & a_{n}^{3} & \cdots & a_{n}^{n} \\
1 & x & x^{2} & x^{3} & \cdots & x^{n}
\end{array}\right|
$$

where $a_{i} \in \Re$ and $a_{i} \neq a_{j}$ when $i \neq j$
(a) What is the order of $p(x)$ ? Explain your answer.
(b) What are the roots of $p(x)$ ? Explain your answers.
12. Let $\mathbf{T}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}$ be a linear transformation which rotates $\mathfrak{R}^{n}$ by an angle of $1 / 2$ radian about the line passing through the origin in the direction $[1,2,3,4, \ldots n]$, and let $\mathbf{A}$ be the standard matrix representation of $\mathbf{T}$.
(a) What are the real eigenvalues and corresponding eigenspaces of A? Explain your answers.
(b) What are the real eigenvalues and corresponding eigenspaces of $\mathbf{A}^{m}$, where $m$ is any integer $\geq 2$ ? Explain.
(c) Is A an orthogonal matrix? Why or why not?
13. Find the orthogonal complement to the subspace $W$ of $\mathfrak{R}^{3}$ defined by $a x+b y+c z=0$, where $a, b, c \in \mathfrak{R}$ are constants and $x, y, z \in \Re$ are variables.
14. Let $\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots \overrightarrow{\mathbf{v}}_{k}\right\}$ be a non-orthogonal set of $k$ independent vectors in $\mathfrak{R}^{n}$, where $k<n$. You are asked to expand this set to form a basis for $\mathfrak{R}^{n}$. The basis must include $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots \overrightarrow{\mathbf{v}}_{k}$, so it will not be an orthogonal basis and therefore you can't use the Gram-Schmidt process.
(a) Suppose you want the basis to be composed of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots \overrightarrow{\mathbf{v}}_{k}$ and $n-k$ standard basis vectors $\hat{\mathbf{e}}_{j}$. How would you go about finding this basis?
(b) Let $W$ be the $k$-dimensional subspace of $\Re^{n}$ spanned by $\left(\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots \overrightarrow{\mathbf{v}}_{k}\right)$, and let $W^{\perp}$ be its orthogonal complement. In general, the $n-k$ standard basis vectors found in part (a) will not span $W^{\perp}$. Suppose you want to find a different basis for $\Re^{n}$ composed of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots \overrightarrow{\mathbf{v}}_{k}$ and $n-k$ vectors which span $W^{\perp}$. How would you go about finding this basis?
(c) Let $\overrightarrow{\mathbf{b}}=\left[b_{1}, b_{2}, \ldots b_{n}\right]$ be a vector in $\Re^{n}$. How would you find the projection of $\overrightarrow{\mathbf{b}}$ onto $W$ ?
15. Let $M_{3}^{u}$ be the vector space of upper triangular real 3 by 3 matrices, and suppose you have an ordered basis given by:
$B=\left(\left[\begin{array}{ccc}a_{1} & a_{6} & a_{5} \\ 0 & a_{2} & a_{4} \\ 0 & 0 & a_{3}\end{array}\right],\left[\begin{array}{ccc}b_{1} & b_{6} & b_{5} \\ 0 & b_{2} & b_{4} \\ 0 & 0 & b_{3}\end{array}\right],\left[\begin{array}{ccc}c_{1} & c_{6} & c_{5} \\ 0 & c_{2} & c_{4} \\ 0 & 0 & c_{3}\end{array}\right],\left[\begin{array}{ccc}d_{1} & d_{6} & d_{5} \\ 0 & d_{2} & d_{4} \\ 0 & 0 & d_{3}\end{array}\right],\left[\begin{array}{ccc}f_{1} & f_{6} & f_{5} \\ 0 & f_{2} & f_{4} \\ 0 & 0 & f_{3}\end{array}\right],\left[\begin{array}{ccc}g_{1} & g_{6} & g_{5} \\ 0 & g_{2} & g_{4} \\ 0 & 0 & g_{3}\end{array}\right]\right)$
Let $\overrightarrow{\mathbf{v}}$ be a vector in $M_{3}^{u}$ given by $\overrightarrow{\mathbf{v}}=\left[\begin{array}{ccc}v_{1} & v_{6} & v_{5} \\ 0 & v_{2} & v_{4} \\ 0 & 0 & v_{3}\end{array}\right]$.
How would you go about finding $\overrightarrow{\mathbf{v}}_{B}$ ?
16. Let $i=\sqrt{-1}$.
(a) What is $\frac{1}{i}$ ?
(b) Using Euler's formula, find the three cube roots of -8 , in polar form $\left(r e^{i \theta}\right)$, and plot them in the complex plane.
(c) Convert the answers to part (b) into the form $a+i b$, where $a, b \in \mathfrak{R}$.
17. Let the matrix $\mathbf{A}$ be defined by:

$$
\mathbf{A}=\left[\begin{array}{cccc}
\frac{3}{2} & \frac{1}{2} & 0 & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(a) Find all the eigenvalues of $\mathbf{A}$, including the complex ones, and their algebraic multiplicities.
(b) For all eigenvalues which have an algebraic multiplicity greater than 1, find the corresponding eigenspaces and their geometric multiplicities.
(c) Is A diagonalizable? Explain.
18. Let $\mathbf{A}$ be an orthogonal $n$ by $n$ matrix and let $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ be any column vectors in $\mathfrak{R}^{n}$.
(a) Prove $(\mathbf{A} \overrightarrow{\mathbf{x}}) \bullet(\mathbf{A} \overrightarrow{\mathbf{y}})=\overrightarrow{\mathbf{x}} \bullet \overrightarrow{\mathbf{y}}$.
[3]
(b) Prove $\|\mathbf{A} \overrightarrow{\mathbf{x}}\|=\|\overrightarrow{\mathbf{x}}\|$.
(c) Prove the angle between $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{y}}$ is the same as the angle between $\mathbf{A} \overrightarrow{\mathbf{x}}$ and Ay.
19. Suppose you have a computational algorithm which processes large amounts of measured data. Let the data be placed into a vector $\overrightarrow{\mathbf{x}}$ in $\mathfrak{R}^{n}$ and let $\mathbf{A}$ be an $n$ by $n$ matrix which multiplies $\overrightarrow{\mathbf{x}}$ in the computation. What is the advantage of orthogonalizing the computational algorithm so that $\mathbf{A}$ is an orthogonal matrix?
20. The projection matrix $\mathbf{P}$ for the subspace $W$ of $\mathfrak{R}^{n}$ spanned by the column vectors of $\mathbf{A}$ is given by $\mathbf{P}=\mathbf{A}\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$. What's wrong with the following argument? $\mathbf{A}\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}=\mathbf{A}\left(\mathbf{A}^{-1}\left(\mathbf{A}^{T}\right)^{-1}\right) \mathbf{A}^{T}=\left(\mathbf{A} \mathbf{A}^{-1}\right)\left(\left(\mathbf{A}^{T}\right)^{-1} \mathbf{A}^{T}\right)=(\mathbf{I})(\mathbf{I})=\mathbf{I}$, and therefore $\mathbf{P}=\mathbf{I}$. Explain your reasoning.
21. Let $V=\operatorname{sp}\left(e^{-x}, 1, e^{x}\right)$ be a subspace of the vector space of continuous functions of one variable, and let $B=\left(e^{-x}, 1, e^{x}\right)$ be an ordered basis for $V$. Let $B^{\prime}=(\cosh (x), \sinh (x), 1)$ be another ordered basis for V . What is the change of coordinates matrix $C_{B, B}$ ?

